diff options
Diffstat (limited to 'manual')
| -rw-r--r-- | manual/arith.texi | 154 | ||||
| -rw-r--r-- | manual/libc.texinfo | 7 | ||||
| -rw-r--r-- | manual/math.texi | 328 | ||||
| -rw-r--r-- | manual/signal.texi | 3 | ||||
| -rw-r--r-- | manual/stdio.texi | 46 | ||||
| -rw-r--r-- | manual/summary.awk | 24 | ||||
| -rw-r--r-- | manual/texinfo.tex | 134 | ||||
| -rw-r--r-- | manual/xtract-typefun.awk | 6 |
8 files changed, 326 insertions, 376 deletions
diff --git a/manual/arith.texi b/manual/arith.texi index 86fb2667a0..efe0489e40 100644 --- a/manual/arith.texi +++ b/manual/arith.texi @@ -149,10 +149,8 @@ functions, and thus are available if you define @code{_BSD_SOURCE} or @comment math.h @comment BSD @deftypefun int isinf (double @var{x}) -@end deftypefun -@deftypefun int isinff (float @var{x}) -@end deftypefun -@deftypefun int isinfl (long double @var{x}) +@deftypefunx int isinff (float @var{x}) +@deftypefunx int isinfl (long double @var{x}) This function returns @code{-1} if @var{x} represents negative infinity, @code{1} if @var{x} represents positive infinity, and @code{0} otherwise. @end deftypefun @@ -160,10 +158,8 @@ This function returns @code{-1} if @var{x} represents negative infinity, @comment math.h @comment BSD @deftypefun int isnan (double @var{x}) -@end deftypefun -@deftypefun int isnanf (float @var{x}) -@end deftypefun -@deftypefun int isnanl (long double @var{x}) +@deftypefunx int isnanf (float @var{x}) +@deftypefunx int isnanl (long double @var{x}) This function returns a nonzero value if @var{x} is a ``not a number'' value, and zero otherwise. (You can just as well use @code{@var{x} != @var{x}} to get the same result). @@ -172,10 +168,8 @@ value, and zero otherwise. (You can just as well use @code{@var{x} != @comment math.h @comment BSD @deftypefun int finite (double @var{x}) -@end deftypefun -@deftypefun int finitef (float @var{x}) -@end deftypefun -@deftypefun int finitel (long double @var{x}) +@deftypefunx int finitef (float @var{x}) +@deftypefunx int finitel (long double @var{x}) This function returns a nonzero value if @var{x} is finite or a ``not a number'' value, and zero otherwise. @end deftypefun @@ -213,21 +207,21 @@ which returns a value of type @code{int}. The possible values are: @vtable @code @item FP_NAN - The floating-point number @var{x} is ``Not a Number'' (@pxref{Not a Number}) +The floating-point number @var{x} is ``Not a Number'' (@pxref{Not a Number}) @item FP_INFINITE - The value of @var{x} is either plus or minus infinity (@pxref{Infinity}) +The value of @var{x} is either plus or minus infinity (@pxref{Infinity}) @item FP_ZERO - The value of @var{x} is zero. In floating-point formats like @w{IEEE - 754} where the zero value can be signed this value is also returned if - @var{x} is minus zero. +The value of @var{x} is zero. In floating-point formats like @w{IEEE +754} where the zero value can be signed this value is also returned if +@var{x} is minus zero. @item FP_SUBNORMAL - Some floating-point formats (such as @w{IEEE 754}) allow floating-point - numbers to be represented in a denormalized format. This happens if the - absolute value of the number is too small to be represented in the - normal format. @code{FP_SUBNORMAL} is returned for such values of @var{x}. +Some floating-point formats (such as @w{IEEE 754}) allow floating-point +numbers to be represented in a denormalized format. This happens if the +absolute value of the number is too small to be represented in the +normal format. @code{FP_SUBNORMAL} is returned for such values of @var{x}. @item FP_NORMAL - This value is returned for all other cases which means the number is a - plain floating-point number without special meaning. +This value is returned for all other cases which means the number is a +plain floating-point number without special meaning. @end vtable This macro is useful if more than property of a number must be @@ -319,20 +313,16 @@ functions. @comment complex.h @comment ISO @deftypefun double creal (complex double @var{z}) -@end deftypefun -@deftypefun float crealf (complex float @var{z}) -@end deftypefun -@deftypefun {long double} creall (complex long double @var{z}) +@deftypefunx float crealf (complex float @var{z}) +@deftypefunx {long double} creall (complex long double @var{z}) These functions return the real part of the complex number @var{z}. @end deftypefun @comment complex.h @comment ISO @deftypefun double cimag (complex double @var{z}) -@end deftypefun -@deftypefun float cimagf (complex float @var{z}) -@end deftypefun -@deftypefun {long double} cimagl (complex long double @var{z}) +@deftypefunx float cimagf (complex float @var{z}) +@deftypefunx {long double} cimagl (complex long double @var{z}) These functions return the imaginary part of the complex number @var{z}. @end deftypefun @@ -343,10 +333,8 @@ for the real part but the complex part is negated. @comment complex.h @comment ISO @deftypefun {complex double} conj (complex double @var{z}) -@end deftypefun -@deftypefun {complex float} conjf (complex float @var{z}) -@end deftypefun -@deftypefun {complex long double} conjl (complex long double @var{z}) +@deftypefunx {complex float} conjf (complex float @var{z}) +@deftypefunx {complex long double} conjl (complex long double @var{z}) These functions return the conjugate complex value of the complex number @var{z}. @end deftypefun @@ -354,10 +342,8 @@ These functions return the conjugate complex value of the complex number @comment complex.h @comment ISO @deftypefun double carg (complex double @var{z}) -@end deftypefun -@deftypefun float cargf (complex float @var{z}) -@end deftypefun -@deftypefun {long double} cargl (complex long double @var{z}) +@deftypefunx float cargf (complex float @var{z}) +@deftypefunx {long double} cargl (complex long double @var{z}) These functions return argument of the complex number @var{z}. Mathematically, the argument is the phase angle of @var{z} with a branch @@ -367,10 +353,8 @@ cut along the negative real axis. @comment complex.h @comment ISO @deftypefun {complex double} cproj (complex double @var{z}) -@end deftypefun -@deftypefun {complex float} cprojf (complex float @var{z}) -@end deftypefun -@deftypefun {complex long double} cprojl (complex long double @var{z}) +@deftypefunx {complex float} cprojf (complex float @var{z}) +@deftypefunx {complex long double} cprojl (complex long double @var{z}) Return the projection of the complex value @var{z} on the Riemann sphere. Values with a infinite complex part (even if the real part is NaN) are projected to positive infinte on the real axis. If the real part is infinite, the result is equivalent to @@ -418,10 +402,8 @@ are of type @code{long int} rather than @code{int}. @comment math.h @comment ISO @deftypefun double fabs (double @var{number}) -@end deftypefun -@deftypefun float fabsf (float @var{number}) -@end deftypefun -@deftypefun {long double} fabsl (long double @var{number}) +@deftypefunx float fabsf (float @var{number}) +@deftypefunx {long double} fabsl (long double @var{number}) This function returns the absolute value of the floating-point number @var{number}. @end deftypefun @@ -429,10 +411,8 @@ This function returns the absolute value of the floating-point number @comment complex.h @comment ISO @deftypefun double cabs (complex double @var{z}) -@end deftypefun -@deftypefun float cabsf (complex float @var{z}) -@end deftypefun -@deftypefun {long double} cabsl (complex long double @var{z}) +@deftypefunx float cabsf (complex float @var{z}) +@deftypefunx {long double} cabsl (complex long double @var{z}) These functions return the absolute value of the complex number @var{z}. The compiler must support complex numbers to use these functions. (See also the function @code{hypot} in @ref{Exponents and Logarithms}.) The @@ -461,10 +441,8 @@ All these functions are declared in @file{math.h}. @comment math.h @comment ISO @deftypefun double frexp (double @var{value}, int *@var{exponent}) -@end deftypefun -@deftypefun float frexpf (float @var{value}, int *@var{exponent}) -@end deftypefun -@deftypefun {long double} frexpl (long double @var{value}, int *@var{exponent}) +@deftypefunx float frexpf (float @var{value}, int *@var{exponent}) +@deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent}) These functions are used to split the number @var{value} into a normalized fraction and an exponent. @@ -484,10 +462,8 @@ zero is stored in @code{*@var{exponent}}. @comment math.h @comment ISO @deftypefun double ldexp (double @var{value}, int @var{exponent}) -@end deftypefun -@deftypefun float ldexpf (float @var{value}, int @var{exponent}) -@end deftypefun -@deftypefun {long double} ldexpl (long double @var{value}, int @var{exponent}) +@deftypefunx float ldexpf (float @var{value}, int @var{exponent}) +@deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent}) These functions return the result of multiplying the floating-point number @var{value} by 2 raised to the power @var{exponent}. (It can be used to reassemble floating-point numbers that were taken apart @@ -502,20 +478,16 @@ equivalent to those of @code{ldexp} and @code{frexp}: @comment math.h @comment BSD @deftypefun double scalb (double @var{value}, int @var{exponent}) -@end deftypefun -@deftypefun float scalbf (float @var{value}, int @var{exponent}) -@end deftypefun -@deftypefun {long double} scalbl (long double @var{value}, int @var{exponent}) +@deftypefunx float scalbf (float @var{value}, int @var{exponent}) +@deftypefunx {long double} scalbl (long double @var{value}, int @var{exponent}) The @code{scalb} function is the BSD name for @code{ldexp}. @end deftypefun @comment math.h @comment BSD @deftypefun double logb (double @var{x}) -@end deftypefun -@deftypefun float logbf (float @var{x}) -@end deftypefun -@deftypefun {long double} logbl (long double @var{x}) +@deftypefunx float logbf (float @var{x}) +@deftypefunx {long double} logbl (long double @var{x}) These BSD functions return the integer part of the base-2 logarithm of @var{x}, an integer value represented in type @code{double}. This is the highest integer power of @code{2} contained in @var{x}. The sign of @@ -536,10 +508,8 @@ The value returned by @code{logb} is one less than the value that @comment math.h @comment ISO @deftypefun double copysign (double @var{value}, double @var{sign}) -@end deftypefun -@deftypefun float copysignf (float @var{value}, float @var{sign}) -@end deftypefun -@deftypefun {long double} copysignl (long double @var{value}, long double @var{sign}) +@deftypefunx float copysignf (float @var{value}, float @var{sign}) +@deftypefunx {long double} copysignl (long double @var{value}, long double @var{sign}) These functions return a value whose absolute value is the same as that of @var{value}, and whose sign matches that of @var{sign}. This function appears in BSD and was standardized in @w{ISO C 9X}. @@ -580,10 +550,8 @@ result as a @code{double} instead to get around this problem. @comment math.h @comment ISO @deftypefun double ceil (double @var{x}) -@end deftypefun -@deftypefun float ceilf (float @var{x}) -@end deftypefun -@deftypefun {long double} ceill (long double @var{x}) +@deftypefunx float ceilf (float @var{x}) +@deftypefunx {long double} ceill (long double @var{x}) These functions round @var{x} upwards to the nearest integer, returning that value as a @code{double}. Thus, @code{ceil (1.5)} is @code{2.0}. @@ -592,10 +560,8 @@ is @code{2.0}. @comment math.h @comment ISO @deftypefun double floor (double @var{x}) -@end deftypefun -@deftypefun float floorf (float @var{x}) -@end deftypefun -@deftypefun {long double} floorl (long double @var{x}) +@deftypefunx float floorf (float @var{x}) +@deftypefunx {long double} floorl (long double @var{x}) These functions round @var{x} downwards to the nearest integer, returning that value as a @code{double}. Thus, @code{floor (1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}. @@ -604,10 +570,8 @@ integer, returning that value as a @code{double}. Thus, @code{floor @comment math.h @comment ISO @deftypefun double rint (double @var{x}) -@end deftypefun -@deftypefun float rintf (float @var{x}) -@end deftypefun -@deftypefun {long double} rintl (long double @var{x}) +@deftypefunx float rintf (float @var{x}) +@deftypefunx {long double} rintl (long double @var{x}) These functions round @var{x} to an integer value according to the current rounding mode. @xref{Floating Point Parameters}, for information about the various rounding modes. The default @@ -619,10 +583,8 @@ you explicit select another. @comment math.h @comment ISO @deftypefun double nearbyint (double @var{x}) -@end deftypefun -@deftypefun float nearbyintf (float @var{x}) -@end deftypefun -@deftypefun {long double} nearbyintl (long double @var{x}) +@deftypefunx float nearbyintf (float @var{x}) +@deftypefunx {long double} nearbyintl (long double @var{x}) These functions return the same value as the @code{rint} functions but even some rounding actually takes place @code{nearbyint} does @emph{not} raise the inexact exception. @@ -631,10 +593,8 @@ raise the inexact exception. @comment math.h @comment ISO @deftypefun double modf (double @var{value}, double *@var{integer-part}) -@end deftypefun -@deftypefun float modff (flaot @var{value}, float *@var{integer-part}) -@end deftypefun -@deftypefun {long double} modfl (long double @var{value}, long double *@var{integer-part}) +@deftypefunx float modff (flaot @var{value}, float *@var{integer-part}) +@deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part}) These functions break the argument @var{value} into an integer part and a fractional part (between @code{-1} and @code{1}, exclusive). Their sum equals @var{value}. Each of the parts has the same sign as @var{value}, @@ -648,10 +608,8 @@ returns @code{0.5} and stores @code{2.0} into @code{intpart}. @comment math.h @comment ISO @deftypefun double fmod (double @var{numerator}, double @var{denominator}) -@end deftypefun -@deftypefun float fmodf (float @var{numerator}, float @var{denominator}) -@end deftypefun -@deftypefun {long double} fmodl (long double @var{numerator}, long double @var{denominator}) +@deftypefunx float fmodf (float @var{numerator}, float @var{denominator}) +@deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator}) These functions compute the remainder from the division of @var{numerator} by @var{denominator}. Specifically, the return value is @code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n} @@ -669,10 +627,8 @@ If @var{denominator} is zero, @code{fmod} fails and sets @code{errno} to @comment math.h @comment BSD @deftypefun double drem (double @var{numerator}, double @var{denominator}) -@end deftypefun -@deftypefun float dremf (float @var{numerator}, float @var{denominator}) -@end deftypefun -@deftypefun {long double} dreml (long double @var{numerator}, long double @var{denominator}) +@deftypefunx float dremf (float @var{numerator}, float @var{denominator}) +@deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator}) These functions are like @code{fmod} etc except that it rounds the internal quotient @var{n} to the nearest integer instead of towards zero to an integer. For example, @code{drem (6.5, 2.3)} returns @code{-0.4}, diff --git a/manual/libc.texinfo b/manual/libc.texinfo index 50d42b53d6..aa72be16e3 100644 --- a/manual/libc.texinfo +++ b/manual/libc.texinfo @@ -3,12 +3,15 @@ @setfilename libc.info @settitle The GNU C Library @setchapternewpage odd -@comment %**end of header (This is for running Texinfo on a region.) @c This tells texinfo.tex to use the real section titles in xrefs in @c place of the node name, when no section title is explicitly given. @set xref-automatic-section-title -@smallbook +@c @smallbook +@iftex +@afourpaper +@end iftex +@comment %**end of header (This is for running Texinfo on a region.) @c sold 0.06/1.09, print run out 21may96 @set EDITION 0.07 DRAFT diff --git a/manual/math.texi b/manual/math.texi index 78d567b367..e2adccddb3 100644 --- a/manual/math.texi +++ b/manual/math.texi @@ -146,10 +146,8 @@ You can also compute the value of pi with the expression @code{acos @comment math.h @comment ISO @deftypefun double sin (double @var{x}) -@end deftypefun -@deftypefun float sinf (float @var{x}) -@end deftypefun -@deftypefun {long double} sinl (long double @var{x}) +@deftypefunx float sinf (float @var{x}) +@deftypefunx {long double} sinl (long double @var{x}) These functions return the sine of @var{x}, where @var{x} is given in radians. The return value is in the range @code{-1} to @code{1}. @end deftypefun @@ -157,10 +155,8 @@ radians. The return value is in the range @code{-1} to @code{1}. @comment math.h @comment ISO @deftypefun double cos (double @var{x}) -@end deftypefun -@deftypefun float cosf (float @var{x}) -@end deftypefun -@deftypefun {long double} cosl (long double @var{x}) +@deftypefunx float cosf (float @var{x}) +@deftypefunx {long double} cosl (long double @var{x}) These functions return the cosine of @var{x}, where @var{x} is given in radians. The return value is in the range @code{-1} to @code{1}. @end deftypefun @@ -168,10 +164,8 @@ radians. The return value is in the range @code{-1} to @code{1}. @comment math.h @comment ISO @deftypefun double tan (double @var{x}) -@end deftypefun -@deftypefun float tanf (float @var{x}) -@end deftypefun -@deftypefun {long double} tanl (long double @var{x}) +@deftypefunx float tanf (float @var{x}) +@deftypefunx {long double} tanl (long double @var{x}) These functions return the tangent of @var{x}, where @var{x} is given in radians. @@ -189,16 +183,14 @@ either positive or negative @code{HUGE_VAL}. In many applications where @code{sin} and @code{cos} are used, the value for the same argument of both of these functions is used at the same time. Since the algorithm to compute these values is very similar for -both functions there is an additional function with computes both values +both functions there is an additional function which computes both values at the same time. @comment math.h @comment GNU @deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx}) -@end deftypefun -@deftypefun void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx}) -@end deftypefun -@deftypefun void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx}) +@deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx}) +@deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx}) These functions return the sine of @var{x} in @code{*@var{sinx}} and the cosine of @var{x} in @code{*@var{cos}}, where @var{x} is given in radians. Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in @@ -207,53 +199,62 @@ the range of @code{-1} to @code{1}. @cindex complex trigonometric functions -The trigonometric functions are in mathematics not only on real numbers. -They can be extended to complex numbers and the @w{ISO C 9X} standard -introduces these variants in the standard math library. +The trigonometric functions are in mathematics not only defined on real +numbers. They can be extended to complex numbers and the @w{ISO C 9X} +standard introduces these variants in the standard math library. @comment complex.h @comment ISO @deftypefun {complex double} csin (complex double @var{z}) -@end deftypefun -@deftypefun {complex float} csinf (complex float @var{z}) -@end deftypefun -@deftypefun {complex long double} csinl (complex long double @var{z}) +@deftypefunx {complex float} csinf (complex float @var{z}) +@deftypefunx {complex long double} csinl (complex long double @var{z}) These functions return the complex sine of the complex value in @var{z}. The mathematical definition of the complex sine is -@smallexample -sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i)) -@end smallexample +@ifinfo +@math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}. +@end ifinfo +@iftex +@tex +$$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$ +@end tex +@end iftex @end deftypefun @comment complex.h @comment ISO @deftypefun {complex double} ccos (complex double @var{z}) -@end deftypefun -@deftypefun {complex float} ccosf (complex float @var{z}) -@end deftypefun -@deftypefun {complex long double} ccosl (complex long double @var{z}) +@deftypefunx {complex float} ccosf (complex float @var{z}) +@deftypefunx {complex long double} ccosl (complex long double @var{z}) These functions return the complex cosine of the complex value in @var{z}. The mathematical definition of the complex cosine is -@smallexample -cos (z) = 1/2 * (exp (z*i) + exp (-z*i)) -@end smallexample +@ifinfo +@math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))} +@end ifinfo +@iftex +@tex +$$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$ +@end tex +@end iftex @end deftypefun @comment complex.h @comment ISO @deftypefun {complex double} ctan (complex double @var{z}) -@end deftypefun -@deftypefun {complex float} ctanf (complex float @var{z}) -@end deftypefun -@deftypefun {complex long double} ctanl (complex long double @var{z}) +@deftypefunx {complex float} ctanf (complex float @var{z}) +@deftypefunx {complex long double} ctanl (complex long double @var{z}) These functions return the complex tangent of the complex value in @var{z}. The mathematical definition of the complex tangent is -@smallexample -tan (z) = 1/i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i)) -@end smallexample +@ifinfo +@math{tan (z) = 1/i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))} +@end ifinfo +@iftex +@tex +$$\tan(z) = {1\over i} {e^{zi} - e^{-zi}\over e^{zi} + e^{-zi}}$$ +@end tex +@end iftex @end deftypefun @@ -268,10 +269,8 @@ respectively. @comment math.h @comment ISO @deftypefun double asin (double @var{x}) -@end deftypefun -@deftypefun float asinf (float @var{x}) -@end deftypefun -@deftypefun {long double} asinl (long double @var{x}) +@deftypefunx float asinf (float @var{x}) +@deftypefunx {long double} asinl (long double @var{x}) These functions compute the arc sine of @var{x}---that is, the value whose sine is @var{x}. The value is in units of radians. Mathematically, there are infinitely many such values; the one actually returned is the @@ -285,10 +284,8 @@ over the domain @code{-1} to @code{1}. @comment math.h @comment ISO @deftypefun double acos (double @var{x}) -@end deftypefun -@deftypefun float acosf (float @var{x}) -@end deftypefun -@deftypefun {long double} acosl (long double @var{x}) +@deftypefunx float acosf (float @var{x}) +@deftypefunx {long double} acosl (long double @var{x}) These functions compute the arc cosine of @var{x}---that is, the value whose cosine is @var{x}. The value is in units of radians. Mathematically, there are infinitely many such values; the one actually @@ -303,10 +300,8 @@ over the domain @code{-1} to @code{1}. @comment math.h @comment ISO @deftypefun double atan (double @var{x}) -@end deftypefun -@deftypefun float atanf (float @var{x}) -@end deftypefun -@deftypefun {long double} atanl (long double @var{x}) +@deftypefunx float atanf (float @var{x}) +@deftypefunx {long double} atanl (long double @var{x}) These functions compute the arc tangent of @var{x}---that is, the value whose tangent is @var{x}. The value is in units of radians. Mathematically, there are infinitely many such values; the one actually @@ -317,10 +312,8 @@ returned is the one between @code{-pi/2} and @code{pi/2} @comment math.h @comment ISO @deftypefun double atan2 (double @var{y}, double @var{x}) -@end deftypefun -@deftypefun float atan2f (float @var{y}, float @var{x}) -@end deftypefun -@deftypefun {long double} atan2l (long double @var{y}, long double @var{x}) +@deftypefunx float atan2f (float @var{y}, float @var{x}) +@deftypefunx {long double} atan2l (long double @var{y}, long double @var{x}) This is the two argument arc tangent function. It is similar to computing the arc tangent of @var{y}/@var{x}, except that the signs of both arguments are used to determine the quadrant of the result, and @var{x} is @@ -347,10 +340,8 @@ which are usable with complex numbers. @comment complex.h @comment ISO @deftypefun {complex double} casin (complex double @var{z}) -@end deftypefun -@deftypefun {complex float} casinf (complex float @var{z}) -@end deftypefun -@deftypefun {complex long double} casinl (complex long double @var{z}) +@deftypefunx {complex float} casinf (complex float @var{z}) +@deftypefunx {complex long double} casinl (complex long double @var{z}) These functions compute the complex arc sine of @var{z}---that is, the value whose sine is @var{z}. The value is in units of radians. @@ -361,10 +352,8 @@ limitation on the argument @var{z}. @comment complex.h @comment ISO @deftypefun {complex double} cacos (complex double @var{z}) -@end deftypefun -@deftypefun {complex float} cacosf (complex float @var{z}) -@end deftypefun -@deftypefun {complex long double} cacosl (complex long double @var{z}) +@deftypefunx {complex float} cacosf (complex float @var{z}) +@deftypefunx {complex long double} cacosl (complex long double @var{z}) These functions compute the complex arc cosine of @var{z}---that is, the value whose cosine is @var{z}. The value is in units of radians. @@ -376,10 +365,8 @@ limitation on the argument @var{z}. @comment complex.h @comment ISO @deftypefun {complex double} catan (complex double @var{z}) -@end deftypefun -@deftypefun {complex float} catanf (complex float @var{z}) |
