aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/aarch64/fpu/log1pf_advsimd.c
diff options
context:
space:
mode:
authorJoe Ramsay <Joe.Ramsay@arm.com>2023-11-03 12:12:23 +0000
committerSzabolcs Nagy <szabolcs.nagy@arm.com>2023-11-10 17:07:43 +0000
commit3548a4f0872aefa1f0b636a2d89fde96e5b7d46f (patch)
treebddfae80edaa1bbbb4daeed167bda5952da616f6 /sysdeps/aarch64/fpu/log1pf_advsimd.c
parentb07038c5d304a7afc312516ce0ff886a57bf3163 (diff)
downloadglibc-3548a4f0872aefa1f0b636a2d89fde96e5b7d46f.tar.xz
glibc-3548a4f0872aefa1f0b636a2d89fde96e5b7d46f.zip
aarch64: Add vector implementations of log1p routines
May discard sign of zero.
Diffstat (limited to 'sysdeps/aarch64/fpu/log1pf_advsimd.c')
-rw-r--r--sysdeps/aarch64/fpu/log1pf_advsimd.c128
1 files changed, 128 insertions, 0 deletions
diff --git a/sysdeps/aarch64/fpu/log1pf_advsimd.c b/sysdeps/aarch64/fpu/log1pf_advsimd.c
new file mode 100644
index 0000000000..3748830de8
--- /dev/null
+++ b/sysdeps/aarch64/fpu/log1pf_advsimd.c
@@ -0,0 +1,128 @@
+/* Single-precision AdvSIMD log1p
+
+ Copyright (C) 2023 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "v_math.h"
+#include "poly_advsimd_f32.h"
+
+const static struct data
+{
+ float32x4_t poly[8], ln2;
+ uint32x4_t tiny_bound, minus_one, four, thresh;
+ int32x4_t three_quarters;
+} data = {
+ .poly = { /* Generated using FPMinimax in [-0.25, 0.5]. First two coefficients
+ (1, -0.5) are not stored as they can be generated more
+ efficiently. */
+ V4 (0x1.5555aap-2f), V4 (-0x1.000038p-2f), V4 (0x1.99675cp-3f),
+ V4 (-0x1.54ef78p-3f), V4 (0x1.28a1f4p-3f), V4 (-0x1.0da91p-3f),
+ V4 (0x1.abcb6p-4f), V4 (-0x1.6f0d5ep-5f) },
+ .ln2 = V4 (0x1.62e43p-1f),
+ .tiny_bound = V4 (0x34000000), /* asuint32(0x1p-23). ulp=0.5 at 0x1p-23. */
+ .thresh = V4 (0x4b800000), /* asuint32(INFINITY) - tiny_bound. */
+ .minus_one = V4 (0xbf800000),
+ .four = V4 (0x40800000),
+ .three_quarters = V4 (0x3f400000)
+};
+
+static inline float32x4_t
+eval_poly (float32x4_t m, const float32x4_t *p)
+{
+ /* Approximate log(1+m) on [-0.25, 0.5] using split Estrin scheme. */
+ float32x4_t p_12 = vfmaq_f32 (v_f32 (-0.5), m, p[0]);
+ float32x4_t p_34 = vfmaq_f32 (p[1], m, p[2]);
+ float32x4_t p_56 = vfmaq_f32 (p[3], m, p[4]);
+ float32x4_t p_78 = vfmaq_f32 (p[5], m, p[6]);
+
+ float32x4_t m2 = vmulq_f32 (m, m);
+ float32x4_t p_02 = vfmaq_f32 (m, m2, p_12);
+ float32x4_t p_36 = vfmaq_f32 (p_34, m2, p_56);
+ float32x4_t p_79 = vfmaq_f32 (p_78, m2, p[7]);
+
+ float32x4_t m4 = vmulq_f32 (m2, m2);
+ float32x4_t p_06 = vfmaq_f32 (p_02, m4, p_36);
+ return vfmaq_f32 (p_06, m4, vmulq_f32 (m4, p_79));
+}
+
+static float32x4_t NOINLINE VPCS_ATTR
+special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
+{
+ return v_call_f32 (log1pf, x, y, special);
+}
+
+/* Vector log1pf approximation using polynomial on reduced interval. Accuracy
+ is roughly 2.02 ULP:
+ log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3. */
+VPCS_ATTR float32x4_t V_NAME_F1 (log1p) (float32x4_t x)
+{
+ const struct data *d = ptr_barrier (&data);
+
+ uint32x4_t ix = vreinterpretq_u32_f32 (x);
+ uint32x4_t ia = vreinterpretq_u32_f32 (vabsq_f32 (x));
+ uint32x4_t special_cases
+ = vorrq_u32 (vcgeq_u32 (vsubq_u32 (ia, d->tiny_bound), d->thresh),
+ vcgeq_u32 (ix, d->minus_one));
+ float32x4_t special_arg = x;
+
+#if WANT_SIMD_EXCEPT
+ if (__glibc_unlikely (v_any_u32 (special_cases)))
+ /* Side-step special lanes so fenv exceptions are not triggered
+ inadvertently. */
+ x = v_zerofy_f32 (x, special_cases);
+#endif
+
+ /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
+ is in [-0.25, 0.5]):
+ log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2).
+
+ We approximate log1p(m) with a polynomial, then scale by
+ k*log(2). Instead of doing this directly, we use an intermediate
+ scale factor s = 4*k*log(2) to ensure the scale is representable
+ as a normalised fp32 number. */
+
+ float32x4_t m = vaddq_f32 (x, v_f32 (1.0f));
+
+ /* Choose k to scale x to the range [-1/4, 1/2]. */
+ int32x4_t k
+ = vandq_s32 (vsubq_s32 (vreinterpretq_s32_f32 (m), d->three_quarters),
+ v_s32 (0xff800000));
+ uint32x4_t ku = vreinterpretq_u32_s32 (k);
+
+ /* Scale x by exponent manipulation. */
+ float32x4_t m_scale
+ = vreinterpretq_f32_u32 (vsubq_u32 (vreinterpretq_u32_f32 (x), ku));
+
+ /* Scale up to ensure that the scale factor is representable as normalised
+ fp32 number, and scale m down accordingly. */
+ float32x4_t s = vreinterpretq_f32_u32 (vsubq_u32 (d->four, ku));
+ m_scale = vaddq_f32 (m_scale, vfmaq_f32 (v_f32 (-1.0f), v_f32 (0.25f), s));
+
+ /* Evaluate polynomial on the reduced interval. */
+ float32x4_t p = eval_poly (m_scale, d->poly);
+
+ /* The scale factor to be applied back at the end - by multiplying float(k)
+ by 2^-23 we get the unbiased exponent of k. */
+ float32x4_t scale_back = vcvtq_f32_s32 (vshrq_n_s32 (k, 23));
+
+ /* Apply the scaling back. */
+ float32x4_t y = vfmaq_f32 (p, scale_back, d->ln2);
+
+ if (__glibc_unlikely (v_any_u32 (special_cases)))
+ return special_case (special_arg, y, special_cases);
+ return y;
+}