aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ChangeLog23
-rw-r--r--NEWS2
-rw-r--r--math/Makefile2
-rw-r--r--sysdeps/generic/math_private.h1
-rw-r--r--sysdeps/i386/fpu/e_pow_log_data.c1
-rw-r--r--sysdeps/ia64/fpu/e_pow_log_data.c1
-rw-r--r--sysdeps/ieee754/dbl-64/Makefile1
-rw-r--r--sysdeps/ieee754/dbl-64/e_exp.c35
-rw-r--r--sysdeps/ieee754/dbl-64/e_pow.c658
-rw-r--r--sysdeps/ieee754/dbl-64/e_pow_log_data.c195
-rw-r--r--sysdeps/ieee754/dbl-64/math_config.h22
-rw-r--r--sysdeps/ieee754/dbl-64/upow.h76
-rw-r--r--sysdeps/ieee754/dbl-64/upow.tbl10188
-rw-r--r--sysdeps/m68k/m680x0/fpu/e_pow_log_data.c1
-rw-r--r--sysdeps/x86_64/fpu/multiarch/Makefile4
15 files changed, 594 insertions, 10616 deletions
diff --git a/ChangeLog b/ChangeLog
index 0be5afdaa0..57ba532bd6 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,26 @@
+2018-09-19 Szabolcs Nagy <szabolcs.nagy@arm.com>
+
+ * NEWS: Mention pow improvements.
+ * math/Makefile (type-double-routines): Add e_pow_log_data.
+ * sysdeps/generic/math_private.h (__exp1): Remove.
+ * sysdeps/i386/fpu/e_pow_log_data.c: New file.
+ * sysdeps/ia64/fpu/e_pow_log_data.c: New file.
+ * sysdeps/ieee754/dbl-64/Makefile (CFLAGS-e_pow.c): Allow fma
+ contraction.
+ * sysdeps/ieee754/dbl-64/e_exp.c (__exp1): Remove.
+ (exp_inline): Remove.
+ (__ieee754_exp): Only single double input is handled.
+ * sysdeps/ieee754/dbl-64/e_pow.c: Rewrite.
+ * sysdeps/ieee754/dbl-64/e_pow_log_data.c: New file.
+ * sysdeps/ieee754/dbl-64/math_config.h (issignaling_inline): Define.
+ (__pow_log_data): Define.
+ * sysdeps/ieee754/dbl-64/upow.h: Remove.
+ * sysdeps/ieee754/dbl-64/upow.tbl: Remove.
+ * sysdeps/m68k/m680x0/fpu/e_pow_log_data.c: New file.
+ * sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_pow-fma.c): Allow fma
+ contraction.
+ (CFLAGS-e_pow-fma4.c): Likewise.
+
2018-09-18 Paul Eggert <eggert@cs.ucla.edu>
Simplify tzfile fstat failure code
diff --git a/NEWS b/NEWS
index f76ada94d3..53d7bd09b3 100644
--- a/NEWS
+++ b/NEWS
@@ -16,7 +16,7 @@ Major new features:
to set the install root if you wish to install into a non-default
configured location.
-* Optimized generic exp, exp2, log, log2, sinf, cosf, sincosf and tanf.
+* Optimized generic exp, exp2, log, log2, pow, sinf, cosf, sincosf and tanf.
* The reallocarray function is now declared under _DEFAULT_SOURCE, not just
for _GNU_SOURCE, to match BSD environments.
diff --git a/math/Makefile b/math/Makefile
index 2537b2a9ad..750492b381 100644
--- a/math/Makefile
+++ b/math/Makefile
@@ -128,7 +128,7 @@ type-double-suffix :=
type-double-routines := branred doasin dosincos mpa mpatan2 \
k_rem_pio2 mpatan mpsqrt mptan sincos32 \
sincostab math_err e_exp_data e_log_data \
- e_log2_data
+ e_log2_data e_pow_log_data
# float support
type-float-suffix := f
diff --git a/sysdeps/generic/math_private.h b/sysdeps/generic/math_private.h
index c79b65fa6e..d91b929562 100644
--- a/sysdeps/generic/math_private.h
+++ b/sysdeps/generic/math_private.h
@@ -225,7 +225,6 @@ do { \
/* Prototypes for functions of the IBM Accurate Mathematical Library. */
-extern double __exp1 (double __x, double __xx);
extern double __sin (double __x);
extern double __cos (double __x);
extern int __branred (double __x, double *__a, double *__aa);
diff --git a/sysdeps/i386/fpu/e_pow_log_data.c b/sysdeps/i386/fpu/e_pow_log_data.c
new file mode 100644
index 0000000000..1cc8931700
--- /dev/null
+++ b/sysdeps/i386/fpu/e_pow_log_data.c
@@ -0,0 +1 @@
+/* Not needed. */
diff --git a/sysdeps/ia64/fpu/e_pow_log_data.c b/sysdeps/ia64/fpu/e_pow_log_data.c
new file mode 100644
index 0000000000..1cc8931700
--- /dev/null
+++ b/sysdeps/ia64/fpu/e_pow_log_data.c
@@ -0,0 +1 @@
+/* Not needed. */
diff --git a/sysdeps/ieee754/dbl-64/Makefile b/sysdeps/ieee754/dbl-64/Makefile
index c965982fa5..78530b5966 100644
--- a/sysdeps/ieee754/dbl-64/Makefile
+++ b/sysdeps/ieee754/dbl-64/Makefile
@@ -2,5 +2,4 @@ ifeq ($(subdir),math)
# branred depends on precise IEEE double rounding
CFLAGS-branred.c += $(config-cflags-nofma)
CFLAGS-e_sqrt.c += $(config-cflags-nofma)
-CFLAGS-e_pow.c += $(config-cflags-nofma)
endif
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c
index 209f20b972..37fdafcfa0 100644
--- a/sysdeps/ieee754/dbl-64/e_exp.c
+++ b/sysdeps/ieee754/dbl-64/e_exp.c
@@ -85,10 +85,13 @@ top12 (double x)
return asuint64 (x) >> 52;
}
-/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
- If hastail is 0 then xtail is assumed to be 0 too. */
-static inline double
-exp_inline (double x, double xtail, int hastail)
+#ifndef SECTION
+# define SECTION
+#endif
+
+double
+SECTION
+__ieee754_exp (double x)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
@@ -131,9 +134,6 @@ exp_inline (double x, double xtail, int hastail)
kd -= Shift;
#endif
r = x + kd * NegLn2hiN + kd * NegLn2loN;
- /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
- if (hastail)
- r += xtail;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = ki << (52 - EXP_TABLE_BITS);
@@ -149,29 +149,10 @@ exp_inline (double x, double xtail, int hastail)
if (__glibc_unlikely (abstop == 0))
return specialcase (tmp, sbits, ki);
scale = asdouble (sbits);
- /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
+ /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-double
-SECTION
-__ieee754_exp (double x)
-{
- return exp_inline (x, 0, 0);
-}
#ifndef __ieee754_exp
strong_alias (__ieee754_exp, __exp_finite)
#endif
-
-/* Compute e^(x+xx). */
-double
-SECTION
-__exp1 (double x, double xx)
-{
- return exp_inline (x, xx, 1);
-}
diff --git a/sysdeps/ieee754/dbl-64/e_pow.c b/sysdeps/ieee754/dbl-64/e_pow.c
index 9bf29e5cb3..ba38bfefcb 100644
--- a/sysdeps/ieee754/dbl-64/e_pow.c
+++ b/sysdeps/ieee754/dbl-64/e_pow.c
@@ -1,360 +1,380 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2018 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/***************************************************************************/
-/* MODULE_NAME: upow.c */
-/* */
-/* FUNCTIONS: upow */
-/* log1 */
-/* checkint */
-/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */
-/* root.tbl uexp.tbl upow.tbl */
-/* An ultimate power routine. Given two IEEE double machine numbers y,x */
-/* it computes the correctly rounded (to nearest) value of x^y. */
-/* Assumption: Machine arithmetic operations are performed in */
-/* round to nearest mode of IEEE 754 standard. */
-/* */
-/***************************************************************************/
+/* Double-precision x^y function.
+ Copyright (C) 2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
#include <math.h>
-#include "endian.h"
-#include "upow.h"
-#include <dla.h>
-#include "mydefs.h"
-#include "MathLib.h"
-#include "upow.tbl"
-#include <math_private.h>
-#include <fenv_private.h>
-#include <math-underflow.h>
-#include <fenv.h>
+#include <stdint.h>
+#include <math-barriers.h>
+#include <math-narrow-eval.h>
+#include "math_config.h"
-#ifndef SECTION
-# define SECTION
-#endif
+/*
+Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
+relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
+ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
+*/
-static const double huge = 1.0e300, tiny = 1.0e-300;
+#define T __pow_log_data.tab
+#define A __pow_log_data.poly
+#define Ln2hi __pow_log_data.ln2hi
+#define Ln2lo __pow_log_data.ln2lo
+#define N (1 << POW_LOG_TABLE_BITS)
+#define OFF 0x3fe6955500000000
-double __exp1 (double x, double xx);
-static double log1 (double x, double *delta);
-static int checkint (double x);
+/* Top 12 bits of a double (sign and exponent bits). */
+static inline uint32_t
+top12 (double x)
+{
+ return asuint64 (x) >> 52;
+}
-/* An ultimate power routine. Given two IEEE double machine numbers y, x it
- computes the correctly rounded (to nearest) value of X^y. */
-double
-SECTION
-__ieee754_pow (double x, double y)
+/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
+ additional 15 bits precision. IX is the bit representation of x, but
+ normalized in the subnormal range using the sign bit for the exponent. */
+static inline double_t
+log_inline (uint64_t ix, double_t *tail)
{
- double z, a, aa, t, a1, a2, y1, y2;
- mynumber u, v;
- int k;
- int4 qx, qy;
- v.x = y;
- u.x = x;
- if (v.i[LOW_HALF] == 0)
- { /* of y */
- qx = u.i[HIGH_HALF] & 0x7fffffff;
- /* Is x a NaN? */
- if ((((qx == 0x7ff00000) && (u.i[LOW_HALF] != 0)) || (qx > 0x7ff00000))
- && (y != 0 || issignaling (x)))
- return x + x;
- if (y == 1.0)
- return x;
- if (y == 2.0)
- return x * x;
- if (y == -1.0)
- return 1.0 / x;
- if (y == 0)
- return 1.0;
- }
- /* else */
- if (((u.i[HIGH_HALF] > 0 && u.i[HIGH_HALF] < 0x7ff00000) || /* x>0 and not x->0 */
- (u.i[HIGH_HALF] == 0 && u.i[LOW_HALF] != 0)) &&
- /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */
- (v.i[HIGH_HALF] & 0x7fffffff) < 0x4ff00000)
- { /* if y<-1 or y>1 */
- double retval;
+ /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
+ double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
+ uint64_t iz, tmp;
+ int k, i;
- {
- SET_RESTORE_ROUND (FE_TONEAREST);
+ /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
+ The range is split into N subintervals.
+ The ith subinterval contains z and c is near its center. */
+ tmp = ix - OFF;
+ i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
+ k = (int64_t) tmp >> 52; /* arithmetic shift */
+ iz = ix - (tmp & 0xfffULL << 52);
+ z = asdouble (iz);
+ kd = (double_t) k;
- /* Avoid internal underflow for tiny y. The exact value of y does
- not matter if |y| <= 2**-64. */
- if (fabs (y) < 0x1p-64)
- y = y < 0 ? -0x1p-64 : 0x1p-64;
- z = log1 (x, &aa); /* x^y =e^(y log (X)) */
- t = y * CN;
- y1 = t - (t - y);
- y2 = y - y1;
- t = z * CN;
- a1 = t - (t - z);
- a2 = (z - a1) + aa;
- a = y1 * a1;
- aa = y2 * a1 + y * a2;
- a1 = a + aa;
- a2 = (a - a1) + aa;
+ /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
+ invc = T[i].invc;
+ logc = T[i].logc;
+ logctail = T[i].logctail;
- /* Maximum relative error RElog of log1 is 1.0e-21 (69.7 bits).
- Maximum relative error REexp of __exp1 is 1.0e-18 (59.8 bits).
- We actually compute exp ((1 + RElog) * log (x) * y) * (1 + REexp).
- Since RElog/REexp are tiny and log (x) * y is at most log (DBL_MAX),
- this is equivalent to pow (x, y) * (1 + 710 * RElog + REexp).
- So the relative error is 710 * 1.0e-21 + 1.0e-18 = 1.7e-18
- (59 bits). The worst-case ULP error is 0.515. */
+ /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
+ |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
+#ifdef __FP_FAST_FMA
+ r = __builtin_fma (z, invc, -1.0);
+#else
+ /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
+ double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32));
+ double_t zlo = z - zhi;
+ double_t rhi = zhi * invc - 1.0;
+ double_t rlo = zlo * invc;
+ r = rhi + rlo;
+#endif
- retval = __exp1 (a1, a2);
- }
+ /* k*Ln2 + log(c) + r. */
+ t1 = kd * Ln2hi + logc;
+ t2 = t1 + r;
+ lo1 = kd * Ln2lo + logctail;
+ lo2 = t1 - t2 + r;
- if (isinf (retval))
- retval = huge * huge;
- else if (retval == 0)
- retval = tiny * tiny;
- else
- math_check_force_underflow_nonneg (retval);
- return retval;
- }
+ /* Evaluation is optimized assuming superscalar pipelined execution. */
+ double_t ar, ar2, ar3, lo3, lo4;
+ ar = A[0] * r; /* A[0] = -0.5. */
+ ar2 = r * ar;
+ ar3 = r * ar2;
+ /* k*Ln2 + log(c) + r + A[0]*r*r. */
+#ifdef __FP_FAST_FMA
+ hi = t2 + ar2;
+ lo3 = __builtin_fma (ar, r, -ar2);
+ lo4 = t2 - hi + ar2;
+#else
+ double_t arhi = A[0] * rhi;
+ double_t arhi2 = rhi * arhi;
+ hi = t2 + arhi2;
+ lo3 = rlo * (ar + arhi);
+ lo4 = t2 - hi + arhi2;
+#endif
+ /* p = log1p(r) - r - A[0]*r*r. */
+ p = (ar3
+ * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
+ lo = lo1 + lo2 + lo3 + lo4 + p;
+ y = hi + lo;
+ *tail = hi - y + lo;
+ return y;
+}
+
+#undef N
+#undef T
+#define N (1 << EXP_TABLE_BITS)
+#define InvLn2N __exp_data.invln2N
+#define NegLn2hiN __exp_data.negln2hiN
+#define NegLn2loN __exp_data.negln2loN
+#define Shift __exp_data.shift
+#define T __exp_data.tab
+#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
+#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
+#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
+#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
+#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
- if (x == 0)
+/* Handle cases that may overflow or underflow when computing the result that
+ is scale*(1+TMP) without intermediate rounding. The bit representation of
+ scale is in SBITS, however it has a computed exponent that may have
+ overflown into the sign bit so that needs to be adjusted before using it as
+ a double. (int32_t)KI is the k used in the argument reduction and exponent
+ adjustment of scale, positive k here means the result may overflow and
+ negative k means the result may underflow. */
+static inline double
+specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
+{
+ double_t scale, y;
+
+ if ((ki & 0x80000000) == 0)
+ {
+ /* k > 0, the exponent of scale might have overflowed by <= 460. */
+ sbits -= 1009ull << 52;
+ scale = asdouble (sbits);
+ y = 0x1p1009 * (scale + scale * tmp);
+ return check_oflow (y);
+ }
+ /* k < 0, need special care in the subnormal range. */
+ sbits += 1022ull << 52;
+ /* Note: sbits is signed scale. */
+ scale = asdouble (sbits);
+ y = scale + scale * tmp;
+ if (fabs (y) < 1.0)
{
- if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0)
- || (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000) /* NaN */
- return y + y;
- if (fabs (y) > 1.0e20)
- return (y > 0) ? 0 : 1.0 / 0.0;
- k = checkint (y);
- if (k == -1)
- return y < 0 ? 1.0 / x : x;
- else
- return y < 0 ? 1.0 / 0.0 : 0.0; /* return 0 */
+ /* Round y to the right precision before scaling it into the subnormal
+ range to avoid double rounding that can cause 0.5+E/2 ulp error where
+ E is the worst-case ulp error outside the subnormal range. So this
+ is only useful if the goal is better than 1 ulp worst-case error. */
+ double_t hi, lo, one = 1.0;
+ if (y < 0.0)
+ one = -1.0;
+ lo = scale - y + scale * tmp;
+ hi = one + y;
+ lo = one - hi + y + lo;
+ y = math_narrow_eval (hi + lo) - one;
+ /* Fix the sign of 0. */
+ if (y == 0.0)
+ y = asdouble (sbits & 0x8000000000000000);
+ /* The underflow exception needs to be signaled explicitly. */
+ math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
+ y = 0x1p-1022 * y;
+ return check_uflow (y);
+}
- qx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */
- qy = v.i[HIGH_HALF] & 0x7fffffff; /* no sign */
+#define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
- if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) /* NaN */
- return x + y;
- if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0)) /* NaN */
- return x == 1.0 && !issignaling (y) ? 1.0 : y + y;
+/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
+ The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
+static inline double
+exp_inline (double x, double xtail, uint32_t sign_bias)
+{
+ uint32_t abstop;
+ uint64_t ki, idx, top, sbits;
+ /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
+ double_t kd, z, r, r2, scale, tail, tmp;
- /* if x<0 */
- if (u.i[HIGH_HALF] < 0)
+ abstop = top12 (x) & 0x7ff;
+ if (__glibc_unlikely (abstop - top12 (0x1p-54)
+ >= top12 (512.0) - top12 (0x1p-54)))
{
- k = checkint (y);
- if (k == 0)
+ if (abstop - top12 (0x1p-54) >= 0x80000000)
{
- if (qy == 0x7ff00000)
- {
- if (x == -1.0)
- return 1.0;
- else if (x > -1.0)
- return v.i[HIGH_HALF] < 0 ? INF.x : 0.0;
- else
- return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x;
- }
- else if (qx == 0x7ff00000)
- return y < 0 ? 0.0 : INF.x;
- return (x - x) / (x - x); /* y not integer and x<0 */
+ /* Avoid spurious underflow for tiny x. */
+ /* Note: 0 is common input. */
+ double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
+ return sign_bias ? -one : one;
}
- else if (qx == 0x7ff00000)
+ if (abstop >= top12 (1024.0))
{
- if (k < 0)
- return y < 0 ? nZERO.x : nINF.x;
+ /* Note: inf and nan are already handled. */
+ if (asuint64 (x) >> 63)
+ return __math_uflow (sign_bias);
else
- return y < 0 ? 0.0 : INF.x;
- }
- /* if y even or odd */
- if (k == 1)
- return __ieee754_pow (-x, y);
- else
- {
- double retval;
- {
- SET_RESTORE_ROUND (FE_TONEAREST);
- retval = -__ieee754_pow (-x, y);
- }
- if (isinf (retval))
- retval = -huge * huge;
- else if (retval == 0)
- retval = -tiny * tiny;
- return retval;
+ return __math_oflow (sign_bias);
}
+ /* Large x is special cased below. */
+ abstop = 0;
}
- /* x>0 */
- if (qx == 0x7ff00000) /* x= 2^-0x3ff */
- return y > 0 ? x : 0;
+ /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
+ /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
+ z = InvLn2N * x;
+#if TOINT_INTRINSICS
+ /* z - kd is in [-0.5, 0.5] in all rounding modes. */
+ kd = roundtoint (z);
+ ki = converttoint (z);
+#else
+ /* z - kd is in [-1, 1] in non-nearest rounding modes. */
+ kd = math_narrow_eval (z + Shift);
+ ki = asuint64 (kd);
+ kd -= Shift;
+#endif
+ r = x + kd * NegLn2hiN + kd * NegLn2loN;
+ /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
+ r += xtail;
+ /* 2^(k/N) ~= scale * (1 + tail). */
+ idx = 2 * (ki % N);
+ top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
+ tail = asdouble (T[idx]);
+ /* This is only a valid scale when -1023*N < k < 1024*N. */
+ sbits = T[idx + 1] + top;
+ /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
+ /* Evaluation is optimized assuming superscalar pipelined execution. */
+ r2 = r * r;
+ /* Without fma the worst case error is 0.25/N ulp larger. */
+ /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
+ tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
+ if (__glibc_unlikely (abstop == 0))
+ return specialcase (tmp, sbits, ki);
+ scale = asdouble (sbits);
+ /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
+ is no spurious underflow here even without fma. */
+ return scale + scale * tmp;
+}
- if (qy > 0x45f00000 && qy < 0x7ff00000)
- {
- if (x == 1.0)
- return 1.0;
- if (y > 0)
- return (x > 1.0) ? huge * huge : tiny * tiny;
- if (y < 0)
- return (x < 1.0) ? huge * huge : tiny * tiny;
- }
+/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
+ the bit representation of a non-zero finite floating-point