aboutsummaryrefslogtreecommitdiff
path: root/linuxthreads/FAQ.html
diff options
context:
space:
mode:
Diffstat (limited to 'linuxthreads/FAQ.html')
-rw-r--r--linuxthreads/FAQ.html1039
1 files changed, 0 insertions, 1039 deletions
diff --git a/linuxthreads/FAQ.html b/linuxthreads/FAQ.html
deleted file mode 100644
index 21be33ec4c..0000000000
--- a/linuxthreads/FAQ.html
+++ /dev/null
@@ -1,1039 +0,0 @@
-<HTML>
-<HEAD>
-<TITLE>LinuxThreads Frequently Asked Questions</TITLE>
-</HEAD>
-<BODY>
-<H1 ALIGN=center>LinuxThreads Frequently Asked Questions <BR>
- (with answers)</H1>
-<H2 ALIGN=center>[For LinuxThreads version 0.8]</H2>
-
-<HR><P>
-
-<A HREF="#A">A. The big picture</A><BR>
-<A HREF="#B">B. Getting more information</A><BR>
-<A HREF="#C">C. Issues related to the C library</A><BR>
-<A HREF="#D">D. Problems, weird behaviors, potential bugs</A><BR>
-<A HREF="#E">E. Missing functions, wrong types, etc</A><BR>
-<A HREF="#F">F. C++ issues</A><BR>
-<A HREF="#G">G. Debugging LinuxThreads programs</A><BR>
-<A HREF="#H">H. Compiling multithreaded code; errno madness</A><BR>
-<A HREF="#I">I. X-Windows and other libraries</A><BR>
-<A HREF="#J">J. Signals and threads</A><BR>
-<A HREF="#K">K. Internals of LinuxThreads</A><P>
-
-<HR>
-<P>
-
-<H2><A NAME="A">A. The big picture</A></H2>
-
-<H4><A NAME="A.1">A.1: What is LinuxThreads?</A></H4>
-
-LinuxThreads is a Linux library for multi-threaded programming.
-It implements the Posix 1003.1c API (Application Programming
-Interface) for threads. It runs on any Linux system with kernel 2.0.0
-or more recent, and a suitable C library (see section <A HREF="C">C</A>).
-<P>
-
-<H4><A NAME="A.2">A.2: What are threads?</A></H4>
-
-A thread is a sequential flow of control through a program.
-Multi-threaded programming is, thus, a form of parallel programming
-where several threads of control are executing concurrently in the
-program. All threads execute in the same memory space, and can
-therefore work concurrently on shared data.<P>
-
-Multi-threaded programming differs from Unix-style multi-processing in
-that all threads share the same memory space (and a few other system
-resources, such as file descriptors), instead of running in their own
-memory space as is the case with Unix processes.<P>
-
-Threads are useful for two reasons. First, they allow a program to
-exploit multi-processor machines: the threads can run in parallel on
-several processors, allowing a single program to divide its work
-between several processors, thus running faster than a single-threaded
-program, which runs on only one processor at a time. Second, some
-programs are best expressed as several threads of control that
-communicate together, rather than as one big monolithic sequential
-program. Examples include server programs, overlapping asynchronous
-I/O, and graphical user interfaces.<P>
-
-<H4><A NAME="A.3">A.3: What is POSIX 1003.1c?</A></H4>
-
-It's an API for multi-threaded programming standardized by IEEE as
-part of the POSIX standards. Most Unix vendors have endorsed the
-POSIX 1003.1c standard. Implementations of the 1003.1c API are
-already available under Sun Solaris 2.5, Digital Unix 4.0,
-Silicon Graphics IRIX 6, and should soon be available from other
-vendors such as IBM and HP. More generally, the 1003.1c API is
-replacing relatively quickly the proprietary threads library that were
-developed previously under Unix, such as Mach cthreads, Solaris
-threads, and IRIX sprocs. Thus, multithreaded programs using the
-1003.1c API are likely to run unchanged on a wide variety of Unix
-platforms.<P>
-
-<H4><A NAME="A.4">A.4: What is the status of LinuxThreads?</A></H4>
-
-LinuxThreads implements almost all of Posix 1003.1c, as well as a few
-extensions. The only part of LinuxThreads that does not conform yet
-to Posix is signal handling (see section <A HREF="#J">J</A>). Apart
-from the signal stuff, all the Posix 1003.1c base functionality,
-as well as a number of optional extensions, are provided and conform
-to the standard (to the best of my knowledge).
-The signal stuff is hard to get right, at least without special kernel
-support, and while I'm definitely looking at ways to implement the
-Posix behavior for signals, this might take a long time before it's
-completed.<P>
-
-<H4><A NAME="A.5">A.5: How stable is LinuxThreads?</A></H4>
-
-The basic functionality (thread creation and termination, mutexes,
-conditions, semaphores) is very stable. Several industrial-strength
-programs, such as the AOL multithreaded Web server, use LinuxThreads
-and seem quite happy about it. There used to be some rough edges in
-the LinuxThreads / C library interface with libc 5, but glibc 2
-fixes all of those problems and is now the standard C library on major
-Linux distributions (see section <A HREF="#C">C</A>). <P>
-
-<HR>
-<P>
-
-<H2><A NAME="B">B. Getting more information</A></H2>
-
-<H4><A NAME="B.1">B.1: What are good books and other sources of
-information on POSIX threads?</A></H4>
-
-The FAQ for comp.programming.threads lists several books:
-<A HREF="http://www.serpentine.com/~bos/threads-faq/">http://www.serpentine.com/~bos/threads-faq/</A>.<P>
-
-There are also some online tutorials. Follow the links from the
-LinuxThreads web page:
-<A HREF="http://pauillac.inria.fr/~xleroy/linuxthreads">http://pauillac.inria.fr/~xleroy/linuxthreads</A>.<P>
-
-<H4><A NAME="B.2">B.2: I'd like to be informed of future developments on
-LinuxThreads. Is there a mailing list for this purpose?</A></H4>
-
-I post LinuxThreads-related announcements on the newsgroup
-<A HREF="news:comp.os.linux.announce">comp.os.linux.announce</A>,
-and also on the mailing list
-<code>linux-threads@magenet.com</code>.
-You can subscribe to the latter by writing
-<A HREF="mailto:majordomo@magenet.com">majordomo@magenet.com</A>.<P>
-
-<H4><A NAME="B.3">B.3: What are good places for discussing
-LinuxThreads?</A></H4>
-
-For questions about programming with POSIX threads in general, use
-the newsgroup
-<A HREF="news:comp.programming.threads">comp.programming.threads</A>.
-Be sure you read the
-<A HREF="http://www.serpentine.com/~bos/threads-faq/">FAQ</A>
-for this group before you post.<P>
-
-For Linux-specific questions, use
-<A
-HREF="news:comp.os.linux.development.apps">comp.os.linux.development.apps</A>
-and <A
-HREF="news:comp.os.linux.development.kernel">comp.os.linux.development.kernel</A>.
-The latter is especially appropriate for questions relative to the
-interface between the kernel and LinuxThreads.<P>
-
-<H4><A NAME="B.4">B.4: How should I report a possible bug in
-LinuxThreads?</A></H4>
-
-If you're using glibc 2, the best way by far is to use the
-<code>glibcbug</code> script to mail a bug report to the glibc
-maintainers. <P>
-
-If you're using an older libc, or don't have the <code>glibcbug</code>
-script on your machine, then e-mail me directly
-(<code>Xavier.Leroy@inria.fr</code>). <P>
-
-In both cases, before sending the bug report, make sure that it is not
-addressed already in this FAQ. Also, try to send a short program that
-reproduces the weird behavior you observed. <P>
-
-<H4><A NAME="B.5">B.5: I'd like to read the POSIX 1003.1c standard. Is
-it available online?</A></H4>
-
-Unfortunately, no. POSIX standards are copyrighted by IEEE, and
-IEEE does not distribute them freely. You can buy paper copies from
-IEEE, but the price is fairly high ($120 or so). If you disagree with
-this policy and you're an IEEE member, be sure to let them know.<P>
-
-On the other hand, you probably don't want to read the standard. It's
-very hard to read, written in standard-ese, and targeted to
-implementors who already know threads inside-out. A good book on
-POSIX threads provides the same information in a much more readable form.
-I can personally recommend Dave Butenhof's book, <CITE>Programming
-with POSIX threads</CITE> (Addison-Wesley). Butenhof was part of the
-POSIX committee and also designed the Digital Unix implementations of
-POSIX threads, and it shows.<P>
-
-Another good source of information is the X/Open Group Single Unix
-specification which is available both
-<A HREF="http://www.rdg.opengroup.org/onlinepubs/7908799/index.html">on-line</A>
-and as a
-<A HREF="http://www.UNIX-systems.org/gosolo2/">book and CD/ROM</A>.
-That specification includes pretty much all the POSIX standards,
-including 1003.1c, with some extensions and clarifications.<P>
-
-<HR>
-<P>
-
-<H2><A NAME="C">C. Issues related to the C library</A></H2>
-
-<H4><A NAME="C.1">C.1: Which version of the C library should I use
-with LinuxThreads?</A></H4>
-
-The best choice by far is glibc 2, a.k.a. libc 6. It offers very good
-support for multi-threading, and LinuxThreads has been closely
-integrated with glibc 2. The glibc 2 distribution contains the
-sources of a specially adapted version of LinuxThreads.<P>
-
-glibc 2 comes preinstalled as the default C library on several Linux
-distributions, such as RedHat 5 and up, and Debian 2.
-Those distributions include the version of LinuxThreads matching
-glibc 2.<P>
-
-<H4><A NAME="C.2">C.2: My system has libc 5 preinstalled, not glibc
-2. Can I still use LinuxThreads?</H4>
-
-Yes, but you're likely to run into some problems, as libc 5 only
-offers minimal support for threads and contains some bugs that affect
-multithreaded programs. <P>
-
-The versions of libc 5 that work best with LinuxThreads are
-libc 5.2.18 on the one hand, and libc 5.4.12 or later on the other hand.
-Avoid 5.3.12 and 5.4.7: these have problems with the per-thread errno
-variable. <P>
-
-<H4><A NAME="C.3">C.3: So, should I switch to glibc 2, or stay with a
-recent libc 5?</A></H4>
-
-I'd recommend you switch to glibc 2. Even for single-threaded
-programs, glibc 2 is more solid and more standard-conformant than libc
-5. And the shortcomings of libc 5 almost preclude any serious
-multi-threaded programming.<P>
-
-Switching an already installed
-system from libc 5 to glibc 2 is not completely straightforward.
-See the <A HREF="http://sunsite.unc.edu/LDP/HOWTO/Glibc2-HOWTO.html">Glibc2
-HOWTO</A> for more information. Much easier is (re-)installing a
-Linux distribution based on glibc 2, such as RedHat 6.<P>
-
-<H4><A NAME="C.4">C.4: Where can I find glibc 2 and the version of
-LinuxThreads that goes with it?</A></H4>
-
-On <code>prep.ai.mit.edu</code> and its many, many mirrors around the world.
-See <A
-HREF="http://www.gnu.org/order/ftp.html">http://www.gnu.org/order/ftp.html</A>
-for a list of mirrors.<P>
-
-<H4><A NAME="C.5">C.5: Where can I find libc 5 and the version of
-LinuxThreads that goes with it?</A></H4>
-
-For libc 5, see <A HREF="ftp://sunsite.unc.edu/pub/Linux/devel/GCC/"><code>ftp://sunsite.unc.edu/pub/Linux/devel/GCC/</code></A>.<P>
-
-For the libc 5 version of LinuxThreads, see
-<A HREF="ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/linuxthreads/">ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/linuxthreads/</A>.<P>
-
-<H4><A NAME="C.6">C.6: How can I recompile the glibc 2 version of the
-LinuxThreads sources?</A></H4>
-
-You must transfer the whole glibc sources, then drop the LinuxThreads
-sources in the <code>linuxthreads/</code> subdirectory, then recompile
-glibc as a whole. There are now too many inter-dependencies between
-LinuxThreads and glibc 2 to allow separate re-compilation of LinuxThreads.
-<P>
-
-<H4><A NAME="C.7">C.7: What is the correspondence between LinuxThreads
-version numbers, libc version numbers, and RedHat version
-numbers?</A></H4>
-
-Here is a summary. (Information on Linux distributions other than
-RedHat are welcome.)<P>
-
-<TABLE>
-<TR><TD>LinuxThreads </TD> <TD>C library</TD> <TD>RedHat</TD></TR>
-<TR><TD>0.7, 0.71 (for libc 5)</TD> <TD>libc 5.x</TD> <TD>RH 4.2</TD></TR>
-<TR><TD>0.7, 0.71 (for glibc 2)</TD> <TD>glibc 2.0.x</TD> <TD>RH 5.x</TD></TR>
-<TR><TD>0.8</TD> <TD>glibc 2.1.1</TD> <TD>RH 6.0</TD></TR>
-<TR><TD>0.8</TD> <TD>glibc 2.1.2</TD> <TD>not yet released</TD></TR>
-</TABLE>
-<P>
-
-<HR>
-<P>
-
-<H2><A NAME="D">D. Problems, weird behaviors, potential bugs</A></H2>
-
-<H4><A NAME="D.1">D.1: When I compile LinuxThreads, I run into problems in
-file <code>libc_r/dirent.c</code></A></H4>
-
-You probably mean:
-<PRE>
- libc_r/dirent.c:94: structure has no member named `dd_lock'
-</PRE>
-I haven't actually seen this problem, but several users reported it.
-My understanding is that something is wrong in the include files of
-your Linux installation (<code>/usr/include/*</code>). Make sure
-you're using a supported version of the libc 5 library. (See question <A
-HREF="#C.2">C.2</A>).<P>
-
-<H4><A NAME="D.2">D.2: When I compile LinuxThreads, I run into problems with
-<CODE>/usr/include/sched.h</CODE>: there are several occurrences of
-<CODE>_p</CODE> that the C compiler does not understand</A></H4>
-
-Yes, <CODE>/usr/include/sched.h</CODE> that comes with libc 5.3.12 is broken.
-Replace it with the <code>sched.h</code> file contained in the
-LinuxThreads distribution. But really you should not be using libc
-5.3.12 with LinuxThreads! (See question <A HREF="#C.2">C.1</A>.)<P>
-
-<H4><A NAME="D.3">D.3: My program does <CODE>fdopen()</CODE> on a file
-descriptor opened on a pipe. When I link it with LinuxThreads,
-<CODE>fdopen()</CODE> always returns NULL!</A></H4>
-
-You're using one of the buggy versions of libc (5.3.12, 5.4.7., etc).
-See question <A HREF="#C.1">C.1</A> above.<P>
-
-<H4><A NAME="D.4">D.4: My program creates a lot of threads, and after
-a while <CODE>pthread_create()</CODE> no longer returns!</A></H4>
-
-This is known bug in the version of LinuxThreads that comes with glibc
-2.1.1. An upgrade to 2.1.2 is recommended. <P>
-
-<H4><A NAME="D.5">D.5: When I'm running a program that creates N
-threads, <code>top</code> or <code>ps</code>
-display N+2 processes that are running my program. What do all these
-processes correspond to?</A></H4>
-
-Due to the general "one process per thread" model, there's one process
-for the initial thread and N processes for the threads it created
-using <CODE>pthread_create</CODE>. That leaves one process
-unaccounted for. That extra process corresponds to the "thread
-manager" thread, a thread created internally by LinuxThreads to handle
-thread creation and thread termination. This extra thread is asleep
-most of the time.
-
-<H4><A NAME="D.6">D.6: Scheduling seems to be very unfair when there
-is strong contention on a mutex: instead of giving the mutex to each
-thread in turn, it seems that it's almost always the same thread that
-gets the mutex. Isn't this completely broken behavior?</A></H4>
-
-That behavior has mostly disappeared in recent releases of
-LinuxThreads (version 0.8 and up). It was fairly common in older
-releases, though.
-
-What happens in LinuxThreads 0.7 and before is the following: when a
-thread unlocks a mutex, all other threads that were waiting on the
-mutex are sent a signal which makes them runnable. However, the
-kernel scheduler may or may not restart them immediately. If the
-thread that unlocked the mutex tries to lock it again immediately
-afterwards, it is likely that it will succeed, because the threads
-haven't yet restarted. This results in an apparently very unfair
-behavior, when the same thread repeatedly locks and unlocks the mutex,
-while other threads can't lock the mutex.<P>
-
-In LinuxThreads 0.8 and up, <code>pthread_unlock</code> restarts only
-one waiting thread, and pre-assign the mutex to that thread. Hence,
-if the thread that unlocked the mutex tries to lock it again
-immediately, it will block until other waiting threads have had a
-chance to lock and unlock the mutex. This results in much fairer
-scheduling.<P>
-
-Notice however that even the old "unfair" behavior is perfectly
-acceptable with respect to the POSIX standard: for the default
-scheduling policy, POSIX makes no guarantees of fairness, such as "the
-thread waiting for the mutex for the longest time always acquires it
-first". Properly written multithreaded code avoids that kind of heavy
-contention on mutexes, and does not run into fairness problems. If
-you need scheduling guarantees, you should consider using the
-real-time scheduling policies <code>SCHED_RR</code> and
-<code>SCHED_FIFO</code>, which have precisely defined scheduling
-behaviors. <P>
-
-<H4><A NAME="D.7">D.7: I have a simple test program with two threads
-that do nothing but <CODE>printf()</CODE> in tight loops, and from the
-printout it seems that only one thread is running, the other doesn't
-print anything!</A></H4>
-
-Again, this behavior is characteristic of old releases of LinuxThreads
-(0.7 and before); more recent versions (0.8 and up) should not exhibit
-this behavior.<P>
-
-The reason for this behavior is explained in
-question <A HREF="#D.6">D.6</A> above: <CODE>printf()</CODE> performs
-locking on <CODE>stdout</CODE>, and thus your two threads contend very
-heavily for the mutex associated with <CODE>stdout</CODE>. But if you
-do some real work between two calls to <CODE>printf()</CODE>, you'll
-see that scheduling becomes much smoother.<P>
-
-<H4><A NAME="D.8">D.8: I've looked at <code>&lt;pthread.h&gt;</code>
-and there seems to be a gross error in the <code>pthread_cleanup_push</code>
-macro: it opens a block with <code>{</code> but does not close it!
-Surely you forgot a <code>}</code> at the end of the macro, right?
-</A></H4>
-
-Nope. That's the way it should be. The closing brace is provided by
-the <code>pthread_cleanup_pop</code> macro. The POSIX standard
-requires <code>pthread_cleanup_push</code> and
-<code>pthread_cleanup_pop</code> to be used in matching pairs, at the
-same level of brace nesting. This allows
-<code>pthread_cleanup_push</code> to open a block in order to
-stack-allocate some data structure, and
-<code>pthread_cleanup_pop</code> to close that block. It's ugly, but
-it's the standard way of implementing cleanup handlers.<P>
-
-<H4><A NAME="D.9">D.9: I tried to use real-time threads and my program
-loops like crazy and freezes the whole machine!</A></H4>
-
-Versions of LinuxThreads prior to 0.8 are susceptible to ``livelocks''
-(one thread loops, consuming 100% of the CPU time) in conjunction with
-real-time scheduling. Since real-time threads and processes have
-higher priority than normal Linux processes, all other processes on
-the machine, including the shell, the X server, etc, cannot run and
-the machine appears frozen.<P>
-
-The problem is fixed in LinuxThreads 0.8.<P>
-
-<H4><A NAME="D.10">D.10: My application needs to create thousands of
-threads, or maybe even more. Can I do this with
-LinuxThreads?</A></H4>
-
-No. You're going to run into several hard limits:
-<UL>
-<LI>Each thread, from the kernel's standpoint, is one process. Stock
-Linux kernels are limited to at most 512 processes for the super-user,
-and half this number for regular users. This can be changed by
-changing <code>NR_TASKS</code> in <code>include/linux/tasks.h</code>
-and recompiling the kernel. On the x86 processors at least,
-architectural constraints seem to limit <code>NR_TASKS</code> to 4090
-at most.
-<LI>LinuxThreads contains a table of all active threads. This table
-has room for 1024 threads at most. To increase this limit, you must
-change <code>PTHREAD_THREADS_MAX</code> in the LinuxThreads sources
-and recompile.
-<LI>By default, each thread reserves 2M of virtual memory space for
-its stack. This space is just reserved; actual memory is allocated
-for the stack on demand. But still, on a 32-bit processor, the total
-virtual memory space available for the stacks is on the order of 1G,
-meaning that more than 500 threads will have a hard time fitting in.
-You can overcome this limitation by moving to a 64-bit platform, or by
-allocating smaller stacks yourself using the <code>setstackaddr</code>
-attribute.
-<LI>Finally, the Linux kernel contains many algorithms that run in
-time proportional to the number of process table entries. Increasing
-this number drastically will slow down the kernel operations
-noticeably.
-</UL>
-(Other POSIX threads libraries have similar limitations, by the way.)
-For all those reasons, you'd better restructure your application so
-that it doesn't need more than, say, 100 threads. For instance,
-in the case of a multithreaded server, instead of creating a new
-thread for each connection, maintain a fixed-size pool of worker
-threads that pick incoming connection requests from a queue.<P>
-
-<HR>
-<P>
-
-<H2><A NAME="E">E. Missing functions, wrong types, etc</A></H2>
-
-<H4><A NAME="E.1">E.1: Where is <CODE>pthread_yield()</CODE> ? How
-comes LinuxThreads does not implement it?</A></H4>
-
-Because it's not part of the (final) POSIX 1003.1c standard.
-Several drafts of the standard contained <CODE>pthread_yield()</CODE>,
-but then the POSIX guys discovered it was redundant with
-<CODE>sched_yield()</CODE> and dropped it. So, just use
-<CODE>sched_yield()</CODE> instead.
-
-<H4><A NAME="E.2">E.2: I've found some type errors in
-<code>&lt;pthread.h&gt;</code>.
-For instance, the second argument to <CODE>pthread_create()</CODE>
-should be a <CODE>pthread_attr_t</CODE>, not a
-<CODE>pthread_attr_t *</CODE>. Also, didn't you forget to declare
-<CODE>pthread_attr_default</CODE>?</A></H4>
-
-No, I didn't. What you're describing is draft 4 of the POSIX
-standard, which is used in OSF DCE threads. LinuxThreads conforms to the
-final standard. Even though the functions have the same names as in
-draft 4 and DCE, their calling conventions are slightly different. In
-particular, attributes are passed by reference, not by value, and
-default attributes are denoted by the NULL pointer. Since draft 4/DCE
-will eventually disappear, you'd better port your program to use the
-standard interface.<P>
-
-<H4><A NAME="E.3">E.3: I'm porting an application from Solaris and I
-have to rename all thread functions from <code>thr_blah</code> to
-<CODE>pthread_blah</CODE>. This is very annoying. Why did you change
-all the function names?</A></H4>
-
-POSIX did it. The <code>thr_*</code> functions correspond to Solaris
-threads, an older thread interface that you'll find only under
-Solaris. The <CODE>pthread_*</CODE> functions correspond to POSIX
-threads, an international standard available for many, many platforms.
-Even Solaris 2.5 and later support the POSIX threads interface. So,
-do yourself a favor and rewrite your code to use POSIX threads: this
-way, it will run unchanged under Linux, Solaris, and quite a lot of
-other platforms.<P>
-
-<H4><A NAME="E.4">E.4: How can I suspend and resume a thread from
-another thread? Solaris has the <CODE>thr_suspend()</CODE> and
-<CODE>thr_resume()</CODE> functions to do that; why don't you?</A></H4>
-
-The POSIX standard provides <B>no</B> mechanism by which a thread A can
-suspend the execution of another thread B, without cooperation from B.
-The only way to implement a suspend/restart mechanism is to have B
-check periodically some global variable for a suspend request
-and then suspend itself on a condition variable, which another thread
-can signal later to restart B.<P>
-
-Notice that <CODE>thr_suspend()</CODE> is inherently dangerous and
-prone to race conditions. For one thing, there is no control on where
-the target thread stops: it can very well be stopped in the middle of
-a critical section, while holding mutexes. Also, there is no
-guarantee on when the target thread will actually stop. For these
-reasons, you'd be much better off using mutexes and conditions
-instead. The only situations that really require the ability to
-suspend a thread are debuggers and some kind of garbage collectors.<P>
-
-If you really must suspend a thread in LinuxThreads, you can send it a
-<CODE>SIGSTOP</CODE> signal with <CODE>pthread_kill</CODE>. Send
-<CODE>SIGCONT</CODE> for restarting it.
-Beware, this is specific to LinuxThreads and entirely non-portable.
-Indeed, a truly conforming POSIX threads implementation will stop all
-threads when one thread receives the <CODE>SIGSTOP</CODE> signal!
-One day, LinuxThreads will implement that behavior, and the
-non-portable hack with <CODE>SIGSTOP</CODE> won't work anymore.<P>
-
-<H4><A NAME="E.5">E.5: Does LinuxThreads implement
-<CODE>pthread_attr_setstacksize()</CODE> and
-<CODE>pthread_attr_setstackaddr()</CODE>?</A></H4>
-
-These optional functions are provided in recent versions of
-LinuxThreads (0.8 and up). Earlier releases did not provide these
-optional components of the POSIX standard.<P>
-
-Even if <CODE>pthread_attr_setstacksize()</CODE> and
-<CODE>pthread_attr_setstackaddr()</CODE> are now provided, we still
-recommend that you do not use them unless you really have strong
-reasons for doing so. The default stack allocation strategy for
-LinuxThreads is nearly optimal: stacks start small (4k) and
-automatically grow on demand to a fairly large limit (2M).
-Moreover, there is no portable way to estimate the stack requirements
-of a thread, so setting the stack size yourself makes your program
-less reliable and non-portable.<P>
-
-<H4><A NAME="E.6">E.6: LinuxThreads does not support the
-<CODE>PTHREAD_SCOPE_PROCESS</CODE> value of the "contentionscope"
-attribute. Why? </A></H4>
-
-With a "one-to-one" model, as in LinuxThreads (one kernel execution
-context per thread), there is only one scheduler for all processes and
-all threads on the system. So, there is no way to obtain the behavior of
-<CODE>PTHREAD_SCOPE_PROCESS</CODE>.
-
-<H4><A NAME="E.7">E.7: LinuxThreads does not implement process-shared
-mutexes, conditions, and semaphores. Why?</A></H4>
-
-This is another optional component of the POSIX standard. Portable
-applications should test <CODE>_POSIX_THREAD_PROCESS_SHARED</CODE>
-before usi