aboutsummaryrefslogtreecommitdiff
path: root/manual/math.texi
AgeCommit message (Collapse)AuthorFilesLines
2025-03-27Implement C23 pownJoseph Myers1-0/+14
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the pown functions, which are like pow but with an integer exponent. That exponent has type long long int in C23; it was intmax_t in TS 18661-4, and as with other interfaces changed after their initial appearance in the TS, I don't think we need to support the original version of the interface. The test inputs are based on the subset of test inputs for pow that use integer exponents that fit in long long. As the first such template implementation that saves and restores the rounding mode internally (to avoid possible issues with directed rounding and intermediate overflows or underflows in the wrong rounding mode), support also needed to be added for using SET_RESTORE_ROUND* in such template function implementations. This required math-type-macros-float128.h to include <fenv_private.h>, so it can tell whether SET_RESTORE_ROUNDF128 is defined. In turn, the include order with <fenv_private.h> included before <math_private.h> broke loongarch builds, showing up that sysdeps/loongarch/math_private.h is really a fenv_private.h file (maybe implemented internally before the consistent split of those headers in 2018?) and needed to be renamed to fenv_private.h to avoid errors with duplicate macro definitions if <math_private.h> is included after <fenv_private.h>. The underlying implementation uses __ieee754_pow functions (called more than once in some cases, where the exponent does not fit in the floating type). I expect a custom implementation for a given format, that only handles integer exponents but handles larger exponents directly, could be faster and more accurate in some cases. I encourage searching for worst cases for ulps error for these implementations (necessarily non-exhaustively, given the size of the input space). Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-03-14Implement C23 powrJoseph Myers1-0/+15
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the powr functions, which are like pow, but with simpler handling of special cases (based on exp(y*log(x)), so negative x and 0^0 are domain errors, powers of -0 are always +0 or +Inf never -0 or -Inf, and 1^+-Inf and Inf^0 are also domain errors, while NaN^0 and 1^NaN are NaN). The test inputs are taken from those for pow, with appropriate adjustments (including removing all tests that would be domain errors from those in auto-libm-test-in and adding some more such tests in libm-test-powr.inc). The underlying implementation uses __ieee754_pow functions after dealing with all special cases that need to be handled differently. It might be a little faster (avoiding a wrapper and redundant checks for special cases) to have an underlying implementation built separately for both pow and powr with compile-time conditionals for special-case handling, but I expect the benefit of that would be limited given that both functions will end up needing to use the same logic for computing pow outside of special cases. My understanding is that powr(negative, qNaN) should raise "invalid": that the rule on "invalid" for an argument outside the domain of the function takes precedence over a quiet NaN argument producing a quiet NaN result with no exceptions raised (for rootn it's explicit that the 0th root of qNaN raises "invalid"). I've raised this on the WG14 reflector to confirm the intent. Tested for x86_64 and x86, and with build-many-glibcs.py.
2025-03-12math: Refactor how to use libm-test-ulpsAdhemerval Zanella1-20/+22
The current approach tracks math maximum supported errors by explicitly setting them per function and architecture. On newer implementations or new compiler versions, the file is updated with newer values if it shows higher results. The idea is to track the maximum known error, to update the manual with the obtained values. The constant libm-test-ulps shows little value, where it is usually a mechanical change done by the maintainer, for past releases it is usually ignored whether the ulp change resulted from a compiler regression, and the math tests already have a maximum ulp error that triggers a regression. It was shown by a recent update after the new acosf [1] implementation that is correctly rounded, where the libm-test-ulps was indeed from a compiler issue. This patch removes all arch-specific libm-test-ulps, adds system generic libm-test-ulps where applicable, and changes its semantics. The generic files now track specific implementation constraints, like if it is expected to be correctly rounded, or if the system-specific has different error expectations. Now multiple libm-test-ulps can be defined, and system-specific overrides generic implementation. This is for the case where arch-specific implementation might show worse precision than generic implementation, for instance, the cbrtf on i686. Regressions are only reported if the implementation shows larger errors than 9 ulps (13 for IBM long double) unless it is overridden by libm-test-ulps and the maximum error is not printed at the end of tests. The regen-ulps rule is also removed since it does not make sense to update the libm-test-ulps automatically. The manual error table is also removed, Paul Zimmermann and others have been tracking libm precision with a more comprehensive analysis for some releases; so link to his work instead. [1] https://sourceware.org/git/?p=glibc.git;a=commit;h=9cc9f8e11e8fb8f54f1e84d9f024917634a78201
2025-03-07Implement C23 rsqrtJoseph Myers1-0/+13
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the rsqrt functions (1/sqrt(x)). The test inputs are taken from those for sqrt. Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-12Implement C23 atan2piJoseph Myers1-0/+14
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the atan2pi functions (atan2(y,x)/pi). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-11Implement C23 atanpiJoseph Myers1-0/+14
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the atanpi functions (atan(x)/pi). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-10Implement C23 asinpiJoseph Myers1-0/+17
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the asinpi functions (asin(x)/pi). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-09Implement C23 acospiJoseph Myers1-0/+17
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the acospi functions (acos(x)/pi). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-05Implement C23 tanpiJoseph Myers1-0/+12
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the tanpi functions (tan(pi*x)). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-04Implement C23 sinpiJoseph Myers1-0/+13
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the sinpi functions (sin(pi*x)). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-04Implement C23 cospiJoseph Myers1-0/+13
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the cospi functions (cos(pi*x)). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17Implement C23 exp2m1, exp10m1Joseph Myers1-0/+30
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the exp2m1 and exp10m1 functions (exp2(x)-1 and exp10(x)-1, like expm1). As with other such functions, these use type-generic templates that could be replaced with faster and more accurate type-specific implementations in future. Test inputs are copied from those for expm1, plus some additions close to the overflow threshold (copied from exp2 and exp10) and also some near the underflow threshold. exp2m1 has the unusual property of having an input (M_MAX_EXP) where whether the function overflows (under IEEE semantics) depends on the rounding mode. Although these could reasonably be XFAILed in the testsuite (as we do in some cases for arguments very close to a function's overflow threshold when an error of a few ulps in the implementation can result in the implementation not agreeing with an ideal one on whether overflow takes place - the testsuite isn't smart enough to handle this automatically), since these functions aren't required to be correctly rounding, I made the implementation check for and handle this case specially. The Makefile ordering expected by lint-makefiles for the new functions is a bit peculiar, but I implemented it in this patch so that the test passes; I don't know why log2 also needed moving in one Makefile variable setting when it didn't in my previous patches, but the failure showed a different place was expected for that function as well. The powerpc64le IFUNC setup seems not to be as self-contained as one might hope; it shouldn't be necessary to add IFUNCs for new functions such as these simply to get them building, but without setting up IFUNCs for the new functions, there were undefined references to __GI___expm1f128 (that IFUNC machinery results in no such function being defined, but doesn't stop include/math.h from doing the redirection resulting in the exp2m1f128 and exp10m1f128 implementations expecting to call it). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17Implement C23 log10p1Joseph Myers1-0/+14
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the log10p1 functions (log10(1+x): like log1p, but for base-10 logarithms). This is directly analogous to the log2p1 implementation (except that whereas log2p1 has a smaller underflow range than log1p, log10p1 has a larger underflow range). The test inputs are copied from those for log1p and log2p1, plus a few more inputs in that wider underflow range. Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17Implement C23 logp1Joseph Myers1-0/+12
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the logp1 functions (aliases for log1p functions - the name is intended to be more consistent with the new log2p1 and log10p1, where clearly it would have been very confusing to name those functions log21p and log101p). As aliases rather than new functions, the content of this patch is somewhat different from those actually adding new functions. Tests are shared with log1p, so this patch *does* mechanically update all affected libm-test-ulps files to expect the same errors for both functions. The vector versions of log1p on aarch64 and x86_64 are *not* updated to have logp1 aliases (and thus there are no corresponding header, tests, abilist or ulps changes for vector functions either). It would be reasonable for such vector aliases and corresponding changes to other files to be made separately. For now, the log1p tests instead avoid testing logp1 in the vector case (a Makefile change is needed to avoid problems with grep, used in generating the .c files for vector function tests, matching more than one ALL_RM_TEST line in a file testing multiple functions with the same inputs, when it assumes that the .inc file only has a single such line). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-05-20Implement C23 log2p1Joseph Myers1-0/+14
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the log2p1 functions (log2(1+x): like log1p, but for base-2 logarithms). This illustrates the intended structure of implementations of all these function families: define them initially with a type-generic template implementation. If someone wishes to add type-specific implementations, it is likely such implementations can be both faster and more accurate than the type-generic one and can then override it for types for which they are implemented (adding benchmarks would be desirable in such cases to demonstrate that a new implementation is indeed faster). The test inputs are copied from those for log1p. Note that these changes make gen-auto-libm-tests depend on MPFR 4.2 (or later). The bulk of the changes are fairly generic for any such new function. (sysdeps/powerpc/nofpu/Makefile only needs changing for those type-generic templates that use fabs.) Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-04-03manual: Clarify return value of cbrt(3)Alejandro Colomar1-2/+6
Link: <https://lore.kernel.org/linux-man/ZeYKUOKYS7G90SaV@debian/T/#mff0ab388000c6afdb5e5162804d4a0073de481de> Reported-by: Morten Welinder <mwelinder@gmail.com> Cowritten-by: Morten Welinder <mwelinder@gmail.com> Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org> Cc: Vincent Lefevre <vincent@vinc17.net> Cc: DJ Delorie <dj@redhat.com> Cc: Paul Zimmermann <Paul.Zimmermann@inria.fr> Cc: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Alejandro Colomar <alx@kernel.org> Reviewed-by: DJ Delorie <dj@redhat.com>
2024-04-03manual: floor(log2(fabs(x))) has rounding errorsAlejandro Colomar1-2/+5
Link: <https://inbox.sourceware.org/libc-alpha/20240305150131.GD3653@qaa.vinc17.org/T/#m3ceecda630012995339bcc5448fee451cf277a8b> Reported-by: Vincent Lefevre <vincent@vinc17.net> Suggested-by: Vincent Lefevre <vincent@vinc17.net> Reviewed-by: DJ Delorie <dj@redhat.com> Cc: Morten Welinder <mwelinder@gmail.com> Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org> Cc: Paul Zimmermann <Paul.Zimmermann@inria.fr> Cc: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Alejandro Colomar <alx@kernel.org>
2024-04-03manual: logb(x) is floor(log2(fabs(x)))Alejandro Colomar1-1/+1
log2(3) doesn't accept negative input, but it seems logb(3) does accept it. Link: <https://lore.kernel.org/linux-man/ZeYKUOKYS7G90SaV@debian/T/#u> Reported-by: Morten Welinder <mwelinder@gmail.com> Reviewed-by: DJ Delorie <dj@redhat.com> Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org> Cc: Vincent Lefevre <vincent@vinc17.net> Cc: Paul Zimmermann <Paul.Zimmermann@inria.fr> Cc: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Alejandro Colomar <alx@kernel.org>
2024-01-08Remove ia64-linux-gnuAdhemerval Zanella1-1/+1
Linux 6.7 removed ia64 from the official tree [1], following the general principle that a glibc port needs upstream support for the architecture in all the components it depends on (binutils, GCC, and the Linux kernel). Apart from the removal of sysdeps/ia64 and sysdeps/unix/sysv/linux/ia64, there are updates to various comments referencing ia64 for which removal of those references seemed appropriate. The configuration is removed from README and build-many-glibcs.py. The CONTRIBUTED-BY, elf/elf.h, manual/contrib.texi (the porting mention), *.po files, config.guess, and longlong.h are not changed. For Linux it allows cleanup some clone2 support on multiple files. The following bug can be closed as WONTFIX: BZ 22634 [2], BZ 14250 [3], BZ 21634 [4], BZ 10163 [5], BZ 16401 [6], and BZ 11585 [7]. [1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=43ff221426d33db909f7159fdf620c3b052e2d1c [2] https://sourceware.org/bugzilla/show_bug.cgi?id=22634 [3] https://sourceware.org/bugzilla/show_bug.cgi?id=14250 [4] https://sourceware.org/bugzilla/show_bug.cgi?id=21634 [5] https://sourceware.org/bugzilla/show_bug.cgi?id=10163 [6] https://sourceware.org/bugzilla/show_bug.cgi?id=16401 [7] https://sourceware.org/bugzilla/show_bug.cgi?id=11585 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2022-07-27arc4random: simplify design for better safetyJason A. Donenfeld1-10/+3
Rather than buffering 16 MiB of entropy in userspace (by way of chacha20), simply call getrandom() every time. This approach is doubtlessly slower, for now, but trying to prematurely optimize arc4random appears to be leading toward all sorts of nasty properties and gotchas. Instead, this patch takes a much more conservative approach. The interface is added as a basic loop wrapper around getrandom(), and then later, the kernel and libc together can work together on optimizing that. This prevents numerous issues in which userspace is unaware of when it really must throw away its buffer, since we avoid buffering all together. Future improvements may include userspace learning more from the kernel about when to do that, which might make these sorts of chacha20-based optimizations more possible. The current heuristic of 16 MiB is meaningless garbage that doesn't correspond to anything the kernel might know about. So for now, let's just do something conservative that we know is correct and won't lead to cryptographic issues for users of this function. This patch might be considered along the lines of, "optimization is the root of all evil," in that the much more complex implementation it replaces moves too fast without considering security implications, whereas the incremental approach done here is a much safer way of going about things. Once this lands, we can take our time in optimizing this properly using new interplay between the kernel and userspace. getrandom(0) is used, since that's the one that ensures the bytes returned are cryptographically secure. But on systems without it, we fallback to using /dev/urandom. This is unfortunate because it means opening a file descriptor, but there's not much of a choice. Secondly, as part of the fallback, in order to get more or less the same properties of getrandom(0), we poll on /dev/random, and if the poll succeeds at least once, then we assume the RNG is initialized. This is a rough approximation, as the ancient "non-blocking pool" initialized after the "blocking pool", not before, and it may not port back to all ancient kernels, though it does to all kernels supported by glibc (≥3.2), so generally it's the best approximation we can do. The motivation for including arc4random, in the first place, is to have source-level compatibility with existing code. That means this patch doesn't attempt to litigate the interface itself. It does, however, choose a conservative approach for implementing it. Cc: Adhemerval Zanella Netto <adhemerval.zanella@linaro.org> Cc: Florian Weimer <fweimer@redhat.com> Cc: Cristian Rodríguez <crrodriguez@opensuse.org> Cc: Paul Eggert <eggert@cs.ucla.edu> Cc: Mark Harris <mark.hsj@gmail.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: linux-crypto@vger.kernel.org Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2022-07-26LoongArch: Update NEWS and README for the LoongArch port.caiyinyu1-1/+1
2022-07-22manual: Add documentation for arc4random functionsAdhemerval Zanella Netto1-0/+46
2022-01-19x86_64: Document libmvec vector functions accuracy [BZ #28766]Sunil K Pandey1-2/+3
Document maximum 4 ulps accuracy for x86_64 libmvec functions. This fixes BZ #28766. Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
2022-01-10math: Fix float conversion regressions with gcc-12 [BZ #28713]Szabolcs Nagy1-3/+4
Converting double precision constants to float is now affected by the runtime dynamic rounding mode instead of being evaluated at compile time with default rounding mode (except static object initializers). This can change the computed result and cause performance regression. The known correctness issues (increased ulp errors) are already fixed, this patch fixes remaining cases of unnecessary runtime conversions. Add float M_* macros to math.h as new GNU extension API. To avoid conversions the new M_* macros are used and instead of casting double literals to float, use float literals (only required if the conversion is inexact). The patch was tested on aarch64 where the following symbols had new spurious conversion instructions that got fixed: __clog10f __gammaf_r_finite@GLIBC_2.17 __j0f_finite@GLIBC_2.17 __j1f_finite@GLIBC_2.17 __jnf_finite@GLIBC_2.17 __kernel_casinhf __lgamma_negf __log1pf __y0f_finite@GLIBC_2.17 __y1f_finite@GLIBC_2.17 cacosf cacoshf casinhf catanf catanhf clogf gammaf_positive Fixes bug 28713. Reviewed-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
2020-07-16manual: Use Unicode instead HTML entities for characters (bug 19737)Florian Weimer1-3/+3
Texinfo no longer treats arguments to @set in @ifhtml blocks as literal HTML, so the & in the entity references was encoded as @amp; in HTML. Using the equivalent Unicode characters avoids this issue. Reviewed-by: Carlos O'Donell <carlos@redhat.com> Tested-by: Carlos O'Donell <carlos@redhat.com>
2020-04-17Remove __NO_MATH_INLINESAdhemerval Zanella1-6/+0
With fenvinline.h removal the flag is not used anymore. Checked on x86_64-linux-gnu.
2019-01-07manual: Use @code{errno} instead of @var{errno} [BZ #24063]Florian Weimer1-1/+1
@var is intended for placeholders (such as function parameters). Actual variables need to use @code because @var causes upper-case output, resulting in a different C identifier.
2018-01-29Skeleton documentation for the RISC-V portPalmer Dabbelt1-1/+1
During the upstreaming process it was suggested that I add a handful of small documentation entries about the RISC-V port, which I've collected here. 2018-01-29 Palmer Dabbelt <palmer@sifive.com> * manual/math.texi: RISC-V supports _Float128 and _Float64x.
2017-12-07Add _Float32 function aliases.Joseph Myers1-1/+2
This patch concludes filling out TS 18661-3 support for different types by adding *f32 function aliases of float functions to support _Float32. As with _Float64 and _Float32x, this is supported for all glibc configurations. As with the previous such patches there are some x86 ulps updates because of inline functions present for float but not for _Float32. The patch also has the usual bits/floatn-common.h update, symbol versions, ABI baselines updates, test enablement and documentation. Tested for x86_64 and x86, and with build-many-glibcs.py, with both GCC 6 and GCC 7. * bits/floatn-common.h (__HAVE_FLOAT32): Define to 1. * manual/math.texi (Mathematics): Document support for _Float32. * math/Makefile (test-types): Add float32. * math/Versions (GLIBC_2.27): Add _Float32 functions. * stdlib/Versions (GLIBC_2.27): Likewise. * wcsmbs/Versions (GLIBC_2.27): Likewise. * sysdeps/unix/sysv/linux/aarch64/libc.abilist: Update. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilepro/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise. * sysdeps/i386/fpu/libm-test-ulps: Likewise. * sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
2017-12-06Add _Float64, _Float32x function aliases.Joseph Myers1-3/+4
This patch continues filling out TS 18661-3 support by adding *f64 and *f32x function aliases, supporting _Float64 and _Float32x, as aliases for double functions. These types are supported for all glibc configurations. The API corresponds exactly to that for _Float128 and _Float64x. _Float32 aliases to float functions remain to be added in subsequent patches to complete this process (then there are a few miscellaneous functions in TS 18661-3 to implement that aren't simply versions of existing functions for new types). The patch enables the feature in bits/floatn-common.h, adds symbol versions and documentation with updates to ABI baselines, and arranges for the libm functions for the new types to be tested. As with the _Float64x changes there are some x86 ulps updates because of header inlines not used for the new types (and one other change to the non-multiarch libm-test-ulps, which I suppose comes from using a different compiler version / configuration from when it was last regenerated). Tested for x86_64 and x86, and with build-many-glibcs.py, with both GCC 6 and GCC 7. * bits/floatn-common.h (__HAVE_FLOAT64): Define to 1. (__HAVE_FLOAT32X): Likewise. * manual/math.texi (Mathematics): Document support for _Float64 and _Float32x. * math/Makefile (test-types): Add float64 and float32x. * math/Versions (GLIBC_2.27): Add _Float64 and _Float32x functions. * stdlib/Versions (GLIBC_2.27): Likewise. * wcsmbs/Versions (GLIBC_2.27): Likewise. * sysdeps/unix/sysv/linux/aarch64/libc.abilist: Update. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilepro/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise. * sysdeps/i386/fpu/libm-test-ulps: Likewise. * sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
2017-11-27Add _Float64x function aliases.Joseph Myers1-3/