1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
/* Double-precision vector (Advanced SIMD) asinh function
Copyright (C) 2024-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f64.h"
const static struct data
{
uint64x2_t huge_bound, abs_mask, off, mask;
#if WANT_SIMD_EXCEPT
float64x2_t tiny_bound;
#endif
float64x2_t lc0, lc2;
double lc1, lc3, ln2, lc4;
float64x2_t c0, c2, c4, c6, c8, c10, c12, c14, c16, c17;
double c1, c3, c5, c7, c9, c11, c13, c15;
} data = {
#if WANT_SIMD_EXCEPT
.tiny_bound = V2 (0x1p-26),
#endif
/* Even terms of polynomial s.t. asinh(x) is approximated by
asinh(x) ~= x + x^3 * (C0 + C1 * x + C2 * x^2 + C3 * x^3 + ...).
Generated using Remez, f = (asinh(sqrt(x)) - sqrt(x))/x^(3/2). */
.c0 = V2 (-0x1.55555555554a7p-3),
.c1 = 0x1.3333333326c7p-4,
.c2 = V2 (-0x1.6db6db68332e6p-5),
.c3 = 0x1.f1c71b26fb40dp-6,
.c4 = V2 (-0x1.6e8b8b654a621p-6),
.c5 = 0x1.1c4daa9e67871p-6,
.c6 = V2 (-0x1.c9871d10885afp-7),
.c7 = 0x1.7a16e8d9d2ecfp-7,
.c8 = V2 (-0x1.3ddca533e9f54p-7),
.c9 = 0x1.0becef748dafcp-7,
.c10 = V2 (-0x1.b90c7099dd397p-8),
.c11 = 0x1.541f2bb1ffe51p-8,
.c12 = V2 (-0x1.d217026a669ecp-9),
.c13 = 0x1.0b5c7977aaf7p-9,
.c14 = V2 (-0x1.e0f37daef9127p-11),
.c15 = 0x1.388b5fe542a6p-12,
.c16 = V2 (-0x1.021a48685e287p-14),
.c17 = V2 (0x1.93d4ba83d34dap-18),
.lc0 = V2 (-0x1.ffffffffffff7p-2),
.lc1 = 0x1.55555555170d4p-2,
.lc2 = V2 (-0x1.0000000399c27p-2),
.lc3 = 0x1.999b2e90e94cap-3,
.lc4 = -0x1.554e550bd501ep-3,
.ln2 = 0x1.62e42fefa39efp-1,
.off = V2 (0x3fe6900900000000),
.huge_bound = V2 (0x5fe0000000000000),
.abs_mask = V2 (0x7fffffffffffffff),
.mask = V2 (0xfffULL << 52),
};
static float64x2_t NOINLINE VPCS_ATTR
special_case (float64x2_t x, float64x2_t y, uint64x2_t abs_mask,
uint64x2_t special)
{
/* Copy sign. */
y = vbslq_f64 (abs_mask, y, x);
return v_call_f64 (asinh, x, y, special);
}
#define N (1 << V_LOG_TABLE_BITS)
#define IndexMask (N - 1)
struct entry
{
float64x2_t invc;
float64x2_t logc;
};
static inline struct entry
lookup (uint64x2_t i)
{
/* Since N is a power of 2, n % N = n & (N - 1). */
struct entry e;
uint64_t i0 = (vgetq_lane_u64 (i, 0) >> (52 - V_LOG_TABLE_BITS)) & IndexMask;
uint64_t i1 = (vgetq_lane_u64 (i, 1) >> (52 - V_LOG_TABLE_BITS)) & IndexMask;
float64x2_t e0 = vld1q_f64 (&__v_log_data.table[i0].invc);
float64x2_t e1 = vld1q_f64 (&__v_log_data.table[i1].invc);
e.invc = vuzp1q_f64 (e0, e1);
e.logc = vuzp2q_f64 (e0, e1);
return e;
}
static inline float64x2_t
log_inline (float64x2_t xm, const struct data *d)
{
uint64x2_t u = vreinterpretq_u64_f64 (xm);
uint64x2_t u_off = vsubq_u64 (u, d->off);
int64x2_t k = vshrq_n_s64 (vreinterpretq_s64_u64 (u_off), 52);
uint64x2_t iz = vsubq_u64 (u, vandq_u64 (u_off, d->mask));
float64x2_t z = vreinterpretq_f64_u64 (iz);
struct entry e = lookup (u_off);
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, e.invc);
float64x2_t kd = vcvtq_f64_s64 (k);
/* hi = r + log(c) + k*Ln2. */
float64x2_t ln2_and_lc4 = vld1q_f64 (&d->ln2);
float64x2_t hi = vfmaq_laneq_f64 (vaddq_f64 (e.logc, r), kd, ln2_and_lc4, 0);
/* y = r2*(A0 + r*A1 + r2*(A2 + r*A3 + r2*A4)) + hi. */
float64x2_t odd_coeffs = vld1q_f64 (&d->lc1);
float64x2_t r2 = vmulq_f64 (r, r);
float64x2_t y = vfmaq_laneq_f64 (d->lc2, r, odd_coeffs, 1);
float64x2_t p = vfmaq_laneq_f64 (d->lc0, r, odd_coeffs, 0);
y = vfmaq_laneq_f64 (y, r2, ln2_and_lc4, 1);
y = vfmaq_f64 (p, r2, y);
return vfmaq_f64 (hi, y, r2);
}
/* Double-precision implementation of vector asinh(x).
asinh is very sensitive around 1, so it is impractical to devise a single
low-cost algorithm which is sufficiently accurate on a wide range of input.
Instead we use two different algorithms:
asinh(x) = sign(x) * log(|x| + sqrt(x^2 + 1) if |x| >= 1
= sign(x) * (|x| + |x|^3 * P(x^2)) otherwise
where log(x) is an optimized log approximation, and P(x) is a polynomial
shared with the scalar routine. The greatest observed error 2.79 ULP, in
|x| >= 1:
_ZGVnN2v_asinh(0x1.2cd9d73ea76a6p+0) got 0x1.ffffd003219dap-1
want 0x1.ffffd003219ddp-1. */
VPCS_ATTR float64x2_t V_NAME_D1
|